

「宇宙開発フォーラム2012報告書」作成にあたって

「宇宙開発フォーラム2012」は

幅広い視野から宇宙開発の現状とその課題を見つめ将来の宇宙開発について考えていく場です。本年度は「宇宙と社会，今と未来。」をキャッチフレーズに 9月15日（土），16日（日）の2日間にわたり
東京大学武田先端知ビル武田ホールにて開催しました。本フォーラムでは，講師講演，ワークショップ，パネルディスカッション といった参加型シンポジウム形式のプログラムを実施した他 ポスターセッションやレセプションなど，フォーラムに参加した方同士の交流・ネットワーク構築を目的としたプログラムも併せて行いました。

本報告書では，宇宙開発フォーラム実行委員会（以下SDF）や本フォーラムで行われたプログラムの内容を中心に紹介しています。

また，最後には参加者の皆さまからいただいたご感想と アンケート結果も掲載しております。

なお本報告書の作成を含むSDFの活動は，SDFが独自に行っている ものであり，SDF以外の特定の外部組織の意向が反映されたものではありません。

CONTENTS

宇宙開発フォーラム2012
sdf 10th anniversary 2002－2012

SEMINAR
01 アジアにおける宇宙開発活動と 日本の取組み

川井孝之様（Takayuki KAWAI）

（独）宇宙航空研究開発機構宇宙利用ミッション本部衛星利用推進センター
ミッション企画室 室長
（講演時）（独）宇宙航空研究開発機構 国際部 国際課長

02 宇宙ビジネスのファイナンス

小塚荘一郎様（Souichirou KOZUKA）

学習院大学 法学部教授

WORKSHOP

03 宇宙産業における国際標準化戦略 14
永島 敬—郎 様（Keiichiro EISHIMA）
東京海上日動火災保険株式会社航空保険部宇宙保険室技術碩問
04 スペースデブリと宇宙法 20内冨 素子 様（Motoko UCHITOMI）（独）宇宙航空研究開発機構総務部法務課副課長国際部国際課 兼務東京大学公共政策大学院非常勤講師
PANEL DISCUSSION
05 有人宇宙開発の意義と未来26
パネリスト
井上友貴様（Tomotaka INOUE）
内閣府宇宙戦略室参事官補佐
坂本 規博様（Norihiro SAKAMOTO）
東京財团研究員
三宅 正純 様（Masazumi MIYAKE）
（独）宇宙航空研究開発機構
有人宇宙環境利用ミッション本部

報告書概要 02
国際宇宙ステーションプログラムマネージャ
コーディネーター
吉岡 奈紗（Nasa YOSHIOKA）宇宙開発フォーラム実行委員会（SDF）代表東京理科大学理学部応用化学科 3 年

Publisher \｜Nasa YOSHIOKA

Editor in Chief $\\|$	Ayano MURATA	
Senior Editor	$\\|$	Yuta UEKI
Writers	Keita IMORI Moe KITAMURA Shohei OGAWA Shoichi YOKOYAMA Suguru SAITO Takumi NAKANO	
Proofreaders	Asako YANO Yoshito TSUJIMOTO Yui KUWAHARA	
Art Director	Kagenori KUBOTA	
Photographers	Kohei AIUCHI Kosuke KINUMATSU Yoshitaka KINUMATSU	

Designers
Atsushi ONAGI
Maho KAMIKURA
Masato HARIKAE

Other Crew
Akihiro OGAYA
Hitomi FURUYA
Hiyori KOGURE
Ichijiro YAMAMOTO
Kazuki SASAKI
Maho HANAKI
Mariko MIKI
Ryo HIRASAWA
Shizusa HISAKAWA
Taishi KANEDA
Toshihiro MATSUGMA

本書の一部あるいは全部の複写•複製，転記•転載を禁ず。

内容についてのお問い合わせ
宇宙開発フォーラム実行委員会（SDF）
E－mail ：info＠sdfec．org
URL ：http：／／www．sdfec．org／
SDFについての詳しい紹介は42，43ページをご
覧ください。

宇宙と社会，今と未来。

SPACE DEVELOPMENT FORUM 2012

SAT 15TH，SUN 16TH SEPTEMBER TAKEDA Building；THE UNIVERSITY OF TOKYO

代表あいさつ

吉岡 奈紗
 （Nasa YOSHIOKA）

宇宙開発フォーラム実行委員会（SDF）代表東京理科大学 理学部応用化学科3年

宇宙基本計画が策定されてから3年，宇宙基本法が成立してから4年 が経ち，今年新たに宇宙戦略室が設立されました。国策として行って いる日本の宇宙開発は，今まさに，激動の時代を迎えています。その ような時代に必要とされるのは，現状を泠静に認識し分析する力，何 が問題であるのかを発見する力，そして発見した問題を解決していく力です。私たち宇宙開発フォーラム実行委員会（SDF）は「文理融合」というコンセプトの下，文科系•理科系という朹にとらわれず現状をさまざまな側面から見つめ，学生ならではの柔軟な発想を以て，現代の宇宙開発の諸問題に対する解決のヒントを模索しております。日々の成果を社会へ発信すると同時に，参加者の皆さまと一緒に宇宙開発に対する考察を深めていく場を提供したいという思いの下，9月15日（土）と16日（日）の2日間にわたり「宇宙開発フォーラム2012」を開催致しました。

「宇宙と社会，今と未来。」
この言葉が本フォーラムのキャッチフレーズです。宇宙がより身近 になりつつある今，宇宙開発が今後さらなる発展を遂げるために，社会における宇宙開発は一体どのような姿であるべきなのか，そして元者のつながりはどう変わっていくべきなのか。このような想いを込め て各コンテンツを作成致しました。
SDFは本年度で10年目という節目の年を迎えます。10周年を迎えら れたのもご支援・ご協力をいただきました講師の皆さま，企業•団体 の皆さま，ポスターを出展していただいた研究室•学生団体の皆さ ま，そして当日ご来場いただいた参加者の皆さまのおかげです。この場を借りて厚く御礼申し上げます。皆さまへの感謝の気持ちを忘れず に，これからも学生ならではの自由な発想を積極的に発信していく団体でありたいと思います。

「アジアにおける宇宙開発活動と日本の取組み」

近年，宇宙分野における新興国の発言力が増している ことを背景に，宇宙開発をめぐる国家間の関係はかつてないほど複雑な様相を呈しています。本溝演では現在の宇宙開発が どのような枠組みで進められているのか，宇宙基本計画を

題材に基礎からレクチャーしていただきました。
さらに，世界第二の経済大国となり影響力を増す中国や その中国に続かんとするアジアの新興国がどのような宇宙活動を行っているのか，そして，日本がそうした国にどのような働きかけをしているのかについてもご講演いただきました。

川井孝之様（Takayuki KAWAI）

（独）宇宙航空研究開発機構 宇宙利用ミッション本部捇星利用推進センターミッション企画室室長 （講演時）（独）宇宙航空研究開発機構 国際部 国際課長

慶應義塾大学法学部法律学科卒。日産自動車（株）宇宙航空事業部［現（株）IHIエアロスペース］日商岩井（株）［現双日（森）］宇宙航空機本部を経て宇宙開発事業団［現宇宙航空研究開発機構］に入社。

皆さまにとって宇宙開発といえばアメリカ のNASAなどが印象深いと思いますが，現在 の私の仕事は実はアジアに関することが非常 に増えてきています。本日は，宇宙開発にお いてなぜアジアとの結びつきが重要なのか， また，現在アジアで行われていること，特に中国の宇宙開発について触れ，さらに，日本 がアジアに対して行っていることを，日本が リードする取組みである「アジア太平洋地域宇宙機関会議（以下APRSAF）」とそこから生まれた宇宙協力プロジェクトを中心に紹介 します。

宇宙開発におけるアジアの重要性

まず，なぜ宇宙開発において日本とアジア との関係は重要なのでしょうか。2008年に制定された宇宙基本法は，日本で初めて宇宙開発の推進体制を定めた法律です。同法第6条に は，宇宙開発利用に関する国際協力，外交な どを積極的に推進するとあります。2009年に は宇宙基本計画が作成され，そこにも「宇宙外交の推進」についての記載があります。つ まり，日本の宇宙開発には国際協力，外交と のかかわりが不可欠だとはっきりと打ち出し ているのです。また，同計画には，具体的に アジアとの関係や途上国との2国間関係に関す る方針についても記されています。このよう に，日本は国を挙げてアジアと協力しながら宇宙開発に取り組もうとしていることが分か ります。

アジアの国々の宇宙開発活動

次に，アジア地域における日本以外の国の宇宙開発活動を紹介します。近年アジア全体 の宇宙開発は非常に活発化しているといえま す。この背景として，経済発展に伴う衛星の社会的ニーズの高まりや，技術進歩によっ て，衛星を低コストで調達•利用できるよう になったことが挙げられます。それでは，以下で各国の状況について紹介していきます。

インドネシアには国立航空宇宙研究所（LAPAN） があります。通信衛星をはじめとする衛星の運用や ロケットの開発を行っており，日本は地球観測デー夕利用で長年協力しています。宇宙開発の体制も しっかりしており，研究技術省という機関もありま す。

インドには宇宙省（DOS），その傘下にインド宇宙研究機関（ISRO）があります。さらに，この傘下 には衛星センターやリモートセンシングセンターな どもあります。通信•放送や気象，災害監視，月や火星の探査，そしてロシアとの協力による有人宇宙活動にも意欲的に取り組んでいます。またISROで開発したロケットや衛星を外部に輸出する民間企業が あり，官民一体となって活動しています。

韓国には韓国航空宇宙研究所（KARI）があり，多目的観測衛星の開発などをしています。ロケットや有人宇宙開発ではロシアと協力して取り組んでいま す。

シンガポールには現時点で宇宙機関は存在せず，自国で地球観測衛星を持つ話もありませんが，シン ガポール国立大学のリモートセンシングセンターで海外から衛星データを導入して活動しています。

タイでは国家地理情報宇宙技術開発機関 （GISTDA）が最も活発に活動しています。2008年

には地球観測衛星「THEOS」を打ち上げ，2015年に も「THEOS－2」打上げの計画があります。また， APRSAFにも積極的に参加しています。

フィリピンは科学技術省宇宙技術応用委員会が中心となっていますが，あまり目立った活動はしてい ません。気象衛星や通信衛星などは海外のデータを用いています。

ベトナムでは数年前に宇宙技術研究所（STI）が創設されました。通信衛星をアメリカから購入し， 2012年5月には2号機を打ち上げました。フランスか らODAによる地球観測衛星の支援を受けており，日本も宇宙関連で初のODAによる供与を決定致しまし た。このODA事業では「宇宙センターの建設」「地球観測衛星2基の製造と打上げ」「技術者教育」の3事業をセットにした総合的支援をし，数年の内に1号機が打ち上がる見込みです。また，ベトナムは津波 や洪水の被害があるため，早期警戒システムの構築 に強い関心を持っています。そのため，国家として衛星を運用していくための国立衛星センター （VNSC）が設立されました。主な宇宙開発活動は， ベトナム科学技術院（VAST）傘下の宇宙技術研究所 （STI）での宇宙技術の研究開発や，天然資源環境省傘下の国立リモートセンシングセンターでのリモー トセンシング技術の開発と利用です。

マレーシアの宇宙開発•利用は非常に進んでお り，マレーシア宇宙庁（ANGKASA）やリモートセ ンシング庁（RSM）が主導しています。通信衛星「MEASAT」を自国で運用しており，2003年には韓国企業の協力で地球観測衛星を打ち上げ，現在2号機 を開発中です。外国の衛星データの利用の他にも，国内産業で生産能力を持つために，技術移転による小型衛星の開発も行っています。体制としては，科学技術革新省（MOSTI）を中心に科学技術政策が推進されており，この下にマレーシア宇宙庁や政府系企業のATSB社などが置かれています。

中国の宇宙開発活動

中国は宇宙大国として日本を追い抜くレベルであ り，2011年末には宇宙開発に関する白書「2011年中国的航天」にて，宇宙開発に関する政策を発表しま した。そこでは，宇宙開発は国家全体の発展戦略の一部であり，新しい発展の機会とされています。ま た，中国が主導するアジア太平洋宇宙協力機構（以下APSCO）ではアジア太平洋地域で協力していこう という姿勢が見られます。

この白書では宇宙開発の目的として，地球と宇宙 に対する認識の拡大，宇宙空間の平和利用，人類文明と社会の進歩促進，全人類に幸福をもたらすとい う四つを挙げています。宇宙開発の発展のための政策として，宇宙科学技術におけるイノベーション能

力の構築や，衛星応用産業あるいは宇宙科学技術産業など，非常に多くの分野の方策を国として進めて います。また，中国では，特に有人宇宙飛行や月探查など，宇宙開発は「総合国力」を示す重要な目印 であるとされています。

中国における具体的な活動として，まず地球観測衛星は，1970年代から回収型多目的衛星シリーズを実施し，その後合成開口レーダー衛星を含むリモー トセンシング衛星シリーズを13号機まで打ち上げま した。資源衛星や海洋衛星など，地球観測衛星の中 でもさまざまな分野を網羅して進めています。航行測位は独自のシステムを持っており，北斗 （Beidou）衛星はすでに試験運用サービスを開始し ています。2012年末までに16機を打ち上げることに よりアジア太平洋地域への航行測位サービスを開始 し，2020年までに全世界をカバーする35機体制を目指しています。

有人宇宙活動では，宇宙船を軌道で運用し帰還す ることにすでに成功しており，現在は船外活動およ びドッキングを行う段階に入っています。最終的に は独自の宇宙基地を運用することを目指していま す。月探査では月周回軌道に衛星を送る段階を終 え，これを月に着陸させることが2013年に行われる予定です。当面の最終目標は2017年にサンプルリ ターンをすることです。月探査には非常に多くの予算が注ぎ达まれており，中国では，有人宇宙活動と並ぶ大規模なプロジェクトとなっています。

日本の対アジア宇宙協力とAPRSAF

最後に，日本の対アジアへの宇宙協力の現状につ いて紹介していきます。地球観測分野では衛星デー夕の提供，能力開発への貢献を，通信•測位分野で は超高速インターネット衛星「きずな」（WINDS） による実験の協力，準天頂衛星「みちびき」を利用 した実証実験が進行中です。地球観測分野では，特 にタイ，インドネシアと地球観測データの提供や キャパシティビルディングの協力などを長年行って います。「きずな」は，アジア向けのアンテナを持っており，アジアとの共同実験や「きずな」を使った防災データの伝送など，アジアに対して通信分野への貢献も進めています。

また，APRSAFを通じた宇宙機関とのネットワー ク維持を行っています。1993年以来，2011年までに 18回の年次会合が開催されました。ワーキンググ ループ（以下WG）の通年活動として，宇宙環境の利用，宇宙教育の普及，地球観測，通信衛星の応用と いう四つのテーマを扱う分科会を置き，情報交換や プロジェクトの立上げなどを行っています。地球観測では，センチネルアジアという災害管理を行うプ ロジェクトや，地球環境の監視を行うSAFEというプ ロジェクトを立ち上げました。以上の 2 点が，これま で主に会議の場であったAPRSAFを，実際に社会に貢献する活動として世界でも高く評価される契機を っくりました。

センチネルアジアが行われるようになった背景 は，アジアが災害多発地域であることです。アジア での災害数は世界の 37% とはいえ，被害額は 47% ，死者の数は 51% ，被災者の数は 88% と，被害が大変大きい地域であるといえます。そのため，災害発生

時の緊急観測は非常に大きな役割を果たしていると いえます。具体的には，災害時の緊急観測による迅速なデータやアーカイブの提供によって災害前後の比較などをしており，現在，日本，タイ，インド，韓国，台湾が提供する衛星データが解析•分析され各国の防災機関に提供されています。一つの衛星で は足りない部分を他の衛星でカバーしており，東日本大震災の際には日本も海外の衛星に助けられまし た。

さらに，このAPRSAFと似たような活動として，先述した中国が主導するAPSCOがあります。ここに はバングラデシュ，イラン，タイ，パキスタン，モ ンゴル，ペルー，トルコが参加しており，条約を結 び進めているため資金負担などの独自の義務が存在 します。両者の違いとしては，APRSAFは非常に緩 やかでフォーラムのような組織であり，規約があり ません。また，プロジェクトは関心のある宇宙機関 からの提案によるものです。一方，APSCOには専任 の人が数名おり，条約を結んだ8カ国のみがGDPの比率に応じて予算を拠出します。また，プロジェクト には義務プロジェクトと選択プロジェクトが存在し ます。

本講演では，日本とアジアとの関係が重要な理由 やアジア地域における宇宙開発活動について詳しく見ていき，最後にAPRSAF，特にセンチネルアジア についてまとめました。JAXAとしても先進国との伝統的な協力を保ちつつ，やはりアジアとの協力も欠 かせないと考えています。

「宇宙ビジネスのファイナンス」

国から民間へ宇宙開発の主役が移りつつある今，資金調達の問題は宇宙産業の発展にとって避けて通れません。今後，宇宙ビジネスの裾野がアメリカヤロシア，ヨーロッパから

世界各地へ広がっていくにあたり，宇宙産業においても ファイナンスの有用性が高まっています。
本年3月に採択されたケープタウン条約宇宙資産議定書は宇宙ビジネスの資金供給を拡大するための国際的枠組みをつくる画期的なものでした。本講演では，草案時から長年その制定に

携わって来られた小塚获一郎 様をお招きして資金調達の観点から宇宙開発についてご講演いただきました。

小塚荘一郎様（Souichirou KOZUKA）

学習院大学 法学部 教授

平成 4 年東京大学法学部卒業。平成19年東京大学より博士（法学）の学位取得。平成 4 年東京大学助手。平成 7 年千葉大学法経済学部助教授。平成10年上智大学法学部助教授。平成17年上智大学法科大学院教授。平成22年学習院大学法学部教授。

私は理科系の方とお付き合いすると，法律 の世界との違いをいつも感じます。法律の学会ではパワーポイントすら使う人が少ないと いうことは，理科系の方には信じ難いでしょ う。10年ほど前，海外で「科学者はlaw of the nature，法学者はlaw of the societyを扱 う。」といわれたことがあります。また，数年前には，ある宇宙法の大会で，海外の法律 の先生が理科系の方に「今後宇宙法の世界で は新しいエキサイティングな問題が起こりま すか。」と意地悪な質問をしたところ，「そ ういうことを言う法律家は宇宙に打ち上げて やる。」とうまい切り替えしをされていまし た。どうも宇宙と法律は，お互いどこか通じ合っていないところがあります。しかし，こ れから宇宙の産業化，民間ビジネスとしての宇宙活動が発展するにあたって法律，とりわ けビジネス法の役割は大きくなるのです。

ビジネスこそが世界を豊かにする鍵

今回の講演では，事前に配布した問題を参加者の皆さまと一緒に考えていきながら，話 を進めていきます。（右側記載の問題をご覧 ください）
問題のような話が持ち上がった場合，従来 の発想では「これは日本の衛星を売り，日本 が打上げ委託を獲得するビジネスチャンスか もしれない。また，南の島国のためにもなる はずであるから，国際協力として話を進めよ う。」となるところです。しかし，この話は一見美談のようですが，実はとても上から目線ではないでしょうか。産業の論理で考える と，まるで発想が違います。たとえば，ホテ ルの観光客にインターネットを使いたいとい う要望があった場合，ホテル間の競争力に差 が出てくるため，インターネットをつなぐ必要があります。また，この衛星は政府や学校 など公的なところでも使えるのであれば，儲 かる可能性があるかもしれません。そして， いざビジネスとしてやるならば，収支損益の分析や会社の設立，資金調達先…と，さまざ まなことを考える必要が出てきます。

こういった話をすると，結局お金だけの話なのか と捉えられてしまうようです。しかし本当にそうで しょうか。世界でしばしば問題になる飢餓ですが， これは実は無償の援助がつくっているという話があ ります。どういうことかというと，同情によって集 まったお金で先進国が無料で食料を配ると，もとも と先進国と比べて生産性の低い途上国の農業は到底太刀打ちできません。そうすると職を失った農民が都会に出ていくようになり，都会での仕事もないた め失業率は増加し，治安が悪化します。私はビジネ ス化こそが世界の隅々まで豊かになっていく鍵だと思うのです。宇宙の分野でも同じことがいえます。

事業計画を考えてみる

さて，問題に戻ります。もし自分が海外派遣され たら，どのような事業計画を立てるか考えてみま しょう。

まず，収支計算をする必要があります。どういった コストがかかるでしょうか。第一に，衛星を買うた めのコストがかかります。また，地上局をつくるた めのコストもかかります。その時ノウハウを何も持っていなければ外部の機関に協力を仰ぐ必要があ りますが，これにもコストがかかります。人を雇う

「Southern Wave Project」計画

本講演では，事前にパンフレットに問題を掲載し，参加者の皆さまにも一緒に考えていただきました。

南太平洋のX国が，周辺国と共同して商用通信衛星を打ち上げるという計画 「Southern Wave Project」を打 ち出した。X国の周囲は島国ばかりで，主要産業は漁業と観光である。通信衛星の用途としては，11 X 国および周辺国の政府による公的な通信（電話•FAX・インターネット。災害情報•気象情報の伝達のための非常時の通信を含 む），②国民の教育水準向上のための通信教育用回線，③観光客によるインターネット回線の利用，（4）操業中の漁船 の通信，⑤付近上空を飛行する航空機の機内無線LANなどが考えられる。

計画では，民間の株式会社Southern Wave Pty Ltd社を設立し，同社が通信衛星の所有•運用を行うことに なっている。①および（2）の公益的性格が認められ，アジア開発銀行が支援することを決定したが，X国の意図として は，地元（周辺地域）の資産家による出資を受けて，名実ともに「X国の衛星」といえるような形態をとりたいと考 えている。とはいえ，衛星運用のノウハウが乏しいので，既存の衛星運用会社にも協力を仰ぎ，運営の支援を受ける必要があるというのが，専門家の見解である。

わが国は，この計画を官民挙げて支援することとなった。そこで，海外協力銀行が融資を行う他，SDFに所属す る学生Aさんを現地に派遣して，プロジェクトリーダーとして活動させることになった。本講演では，Aさんが，ど のような事業計画を立てたらよいかを考えます。次のようなステップで考えると分かりやすいと思いますので，参加者の皆さまも，次のクエスチョン（特に最初の方の問い）を考えてみてください。

問1 プロジェクトを進めていくにあたって，どのような費用が想定されますか。
問2 資金調達先は，どこが考えられますか。
問3 具体的な検討事項（四つ）について，考えてみてください。
（1）資金調達の際にどのような問題が起こるか。
（2）事業計画について，どう理解を得るべきか。
（3）既存の衛星事業者との関係はどうするべきか。
（4）出資と融資の使い分けはどうするべきか。
問4 その他，Aさんはどのような問題について考えるべきでしょうか。

コストもかかります。衛星を打ち上げるためのロ ケットも必要です。ビジネスでは，「失敗して悔し い」では済まないため，保険の話も欠かせません。万が一打上げが失敗した時に被害者を保証する賠償責任保険や，自国が保有している衛星に問題が起 こった時のための衛星保険があります。これらも必要なコストです。そして運用では，人材を揃える必要があります。大手のオペレーターに委託するか，最終的に自立するためのノウハウ移転を求めるかと いうことも検討しなければなりません。また，国際協力の場合では出てこない発想が，突然の故障の場合です。万が一壊れた場合は近くの衛星でカバーす るという契約をつくるなど，バックアップ体制を構築する必要があります。顧客が増えた時，クレーム対応も考えなければなりません。
次に，資金の調達先についても考える必要があり ます。銀行に借りる，地元の資産家や政府，隣国，大手オペレーターにも株主になってもらう，株式公開などがあります。銀行からお金を借りるとなれ ば，公的な教育•金融機関が融資をしてくれるで しょう。しかし，融資額が大きい案件では一つの銀行が 100% の資金を出すことはないため，今回のよう に非常に大規模な計画では複数の銀行が集まり「銀行団」として貸付をしてくれることになります。こ の中には，長い目で見てゆっくり育てていくつもり のところもあれば，潰してさっさとお金を回収しよ うというところもあり，銀行団全体の意思をどう決定するか，考えなければなりません。さらに，株式 と同じように，債券を市場に売って借入する社債と いう方法もあります。これは貸付のため，会社のリ スクが低いことを積極的に説明する必要がありま す。そのためリスクの内容•抑え方も入念に考えな ければなりません。問2，3の問題の意味は以上のよ うなことでした。

ビジネスのリスク

それでは，リスクにはどういうものがあるでしょ うか。まず，宇宙開発の場合に非常に多いのは，納期の遅れや製造途中での会社の倒産，打上げの失敗 などの技術リスクです。納期が遅れる場合，金利は膨らんでいくものの収益ゼロが続くため，銀行側か らするとリスクが大きくなります。この技術リスク に対しては，保険や保証という形で対応します。ま ず，保険では，新しい衛星を発注しもう一度打ち上 げるための保険金をかけます。しかし，この工程は またさらなる1年もの月日がかかるため，保険があっ ても大きなリスクです。次に保証ですが，たとえば銀行は，衛星メーカーが納期を守ることを保証し て，遅れた時には保証金を受け取ることができるよ うにします。しかし，もしも衛星が納期までに納入 された場合はすでに払った保証料が払い損になりま すので，これも考えどころです。

次に，思ったよりユーザーが少なかった場合の事業リスクです。これに対しては，あらかじめ，確実 な数年先の利益を推定しユーザーと契約して融資を受けることや，最悪の場合事業計画変更も考えられ ます。また，ユーザーがホテルの場合であれば，政府や他国にも使ってもらうこともできます。最近， ホテルのそばに巨大ショッピングモールをつくるこ とがよくありますが，当初の予定と違いホテル側が客層を変更すると，ショッピングモール側にも影響 が出てきます。この時トラブルを防ぐために，事前 にさまざまなことを考慮してすべて契約でカバーす る必要があります。同じことが衛星の世界にもいえ ます。たとえば，この衛星のトランスポンダーはこ れに使い，他のトランスポンダーはこれに使い，万 が一使われない場合は近くのテレビ放送にも使う， アンテナの向きや衛星の角度はこうする，というよ うにすべて契約に書く必要があります。

また，経営リスクや政治リスクなども考えられま す。これらには，株主や銀行が経営に介入できる権利を契約の中に書いたり，衛星やその使用状況を担保にしたりすることで対応することができます。以上のすべてを契約，会社の計画などに書き込み，最終的に資金調達契約ができあがります。

『宇宙ビジネス』という世界

株主や銀行から資金を調達し，一方で衛星メー カーに衛星の発注や打上げ委託，保険も含めて契約 をする。そして，ユーザーの利用契約についてもあ らかじめ見通しを持って，場合によっては保証をつ けます。このようにさまざまな関係者間の利害対立 を考慮し調整して，最終的には同意させ，契約条項 に落とし込んでつくる，これをプロジェクトファイ ナンスといいます。宇宙ビジネスというのはこうい う世界です。国の宇宙開発とは全く違う，このよう な世界が，これから増えていきます。

ケープタウン条約宇宙資産議定書の意義

そして，ここで最後の添え物として担保が登場し ます。ここに私と宇宙との最初で最大の接点があり ました。そもそも衛星は担保にとれるのでしょう か。現在の法律の下では，衛星やロケットは動産で すから，抵当権はつきません。それでは困るので，家と同じようにこの抵当権をつけようというのが， ケープタウン条約宇宙資産議定書の発想でした。世界で共通の登記簿をつくり，オンラインで24時間365日世界のどこからでも登記ができる仕組みにし，世界中から衛星に抵当権をつけられるようにします。 つくりはじめて10年，ようやく本年2012年3月に採択 されました。当分は動き出しませんがすでに朹組み はできました。これは非常に大きな意義を持ってい

ます。まず，宇宙法の分野では30年ぶりとなる条約 であり，同時に，これは宇宙分野の初めてのビジネ ス法条約です。月協定以来，制度づくりはできない と思われていたところ，宇宙活動のビジネス化が起 こりました。この結果，過去の宇宙法とは全く違う世界ができたのです。

これは各国の国内法にも影響を与えます。現在 は，法律上どの国でもロケットや衛星に抵当権はつ かないため，これから国内法の中でもそうすべきだ という機運が出てくると期待されます。つまり，宇宙活動のビジネス化に法律が追いつこうとしていま す。法律家は宇宙とは関係ないと思われるかもしれ ませんが，それなりに頑張っています。

日本を宇宙ファイナンスの中心地に

最後に，日本を宇宙ファイナンスの中心地にした いという私の夢を述べます。私は衛星への抵当権の登記所を日本に誘致したいと思っています。日本に置くことで，日本のユーザーの利益が考えられるこ とはもちろん，日本に宇宙ファイナンスに強い銀行員，弁護士，会計士，技術会社が集まってくる。そ うすれば，日本は世界の宇宙ビジネス，宇宙ファイ ナンスの中心地となり，世界の宇宙ビジネスをリー ドしていくことができます。
その時には日本の宇宙産業の下支えをしていく世代になっているであろう，ここに集まった皆さまの活躍の場が少しでも広がるよう，日本に誘致すると いうのが私の任務です。

「宇宙産業における国際標準化戦略」

日本の宇宙産業拡大のツールとしての国際標準化

講師 永島 敬一郎 樣（Keiichiro EISHIMA）

東京海上日動火災保険林式会社航空保険部宇宙保除室技誠碩問1974年4月三菱電機入社以来鐮倉製作所で人工衞星の開発に従事。 この間，地球観測衛星（みどり1号）のプロマネ，鎌倉製作所技師長，技術顧問などに携わった。2012年4月から現職。 なお，2004年から宇宙関係の国際標準化活動の国内委員会の委員長を務め国際会議のコンビナー（議長役）も兼ねている。

本WSは参加者の皆さまに宇宙産業における ビジネスに資する国際標準化戦略の在り方を考えていただくため，以下の（1）セミナー1，② ディスカッション，（3）セミナー2の三つの フェーズに分けて進行しました。なお，参加者の皆さまには国際標準化機構（以下ISO）で国際標準化活動を行う「技術•交渉エキス パート」を目指す，各国の国際標準化推進機関の新人職員として，WSに臨んでいただきま した。

1．国際標準化とビジネス

このフェーズでは，新人職員のための講習会として，国際標準に関する基本的な事柄や ビジネスへの活かし方などについて，セミ ナー形式で以下のように紹介しました。
国際標準とは，製品の品質，性能，寸法，各種試験方法など，各国ごとに異なるさまざ まな規格を世界で統一する，国際的な取決め であり，今日では企業が国ごとの制度上の違 いを超えてビジネスを展開する上で不可欠の要件となりつつあります。またWTO／TBT協定により，国際規格を基礎とした国内規格の策定，政府事業に対する国際規格の採用が事実上義務づけられているため，国内での企業活動に対する影響も大きいといえます。国際標準は1948年に発足し，現在164ヵ国が参加す るISOにおいて議論•発行が行われます。

ISOでの国際標準化は従来，国ごとに異な る製品・サービスの互換性確保が主な目的で したが，近年では社会•経済のグローバル化，ネットワーク化に伴い，自国の企業と連携しながら自国産業に有利な国際規格の提案•制定，あるいは不利な規格発行阻止など の取組みが行われるようになっています。本 WSでは国際標準化をビジネスの源泉とする戦略の一つ「オープン・クローズ戦略」に着目 しました。

オープン・クローズ戦略は，自社の製品に ついて，独自の優れた技術を用いるなど，そ の製品のコアとなる部品と，コア部品以外の周辺部品に分類します。製品のコア部品は，特許を取得するなどしてクローズとし，追随

他社の模做を防止します。コア部品以外の周辺部品 については国際標準規格とするなど，他社に技術を公開してその部品や規格を幅広く利用してもらいま す。自国の周辺部品を国際標準として定め，他社が製造•利用できるようにして市場拡大を目指し，限定された競争範囲において自国の周辺部分と親和性 の高いコア部分をクローズとすることで，拡大した市場でシェア拡大を目指すという戦略です。

2．1．ディスカッション

ディスカッションフェーズでは以下のように設定 した事例に基づき，参加者の皆さまにオープン・ク ローズ戦略という考え方に照らした上で，国際標準化を目指すべきかどうかを考えていただきました。今回扱ったのは，「大型静止衛星用2液式スラスタ」 と，「超小型衛星用リチウムイオンバッテリ」の 2 製品です。オープン・クローズ戦略においては，まず製品について秘匿するコア部品と公開可能な周辺部品に分類し，その上で国際標準化を目指さなければ なりません。また，自社製品と競合する規格の国際標準化を目指す他社の存在も考慮する必要があるた め，自社製品が国際市場でシェアを獲得しているな

ど，すでに一定程度の国際競争力を持っている必要 があると考えられます。さらにオープン・クローズ戦略では，国際標準化に成功した後についても検討 しなければなりません。他社がコア部品でない周辺部品市場に参入し，製品のコストダウンにより市場拡大を目指すため，当該製品市場が今後拡大する見込みの高いものを優先すべきと考えられます。以上 のことから，国際標準化を推進する条件として，本 WSでは次の三つを挙げました。
（1）オープン・クローズ戦略が可能
（2）当該製品が国際競争力を持っている
（3）当該製品の市場が今後拡大する余地がある
これら三つの条件をすべて満たしている場合に限 り，国際標準化を目指すことが可能であるとしまし た。参加者の皆さまには2製品それぞれについて，市場予想，国際競争力，オープン・クローズ戦略の可否を資料から読み取り，グループ内で自由に意見を交わしていただきました。オープン・クローズ戦略 については，製品一つにつき部品を四つ設定し，四 つの部品を開示可能なオープン領域と，競争力を持 ち秘匿化すべきクローズ領域にそれぞれ分類するこ とで判断していただきました。

Kay社はGerda国内で宇宙関係の事業を行う電気機器メーカーであり，長年大型衛星用機器の研究開発を進め Gerda国の宇宙機関へ提供するなどし，また超小型衛星用機器，宇宝関連民生品の分野においても地上民生品を宇宙用に転用するなどして競争力のある製品を持つ。Kay社は海外への事業展開も見据えながら国際競争力を持つ以下の製品について国際標準化を目指すことを検討している。

製品（1）大型静止衛星用2液式スラスタ

－オープン・クローズ戦略
部品A：この部品はGerda国の得意とする精密機械技術を用いており，他国と比べ，高い性能を実現している。
部品B：この部品はスラスタの構成部品の中でも特に高い技術力が求められる部分であり，世界各国が高い品質を求めて技術開
発している。Gerda国も多くの研究開発費を投じ，独自の技術により他国の製品と差別化を図っている。
部品C：この部品は長年の研究によって開発された独自の材料を用いている。
部品D ：この部品はGerda国独自のもので，他国への技術流出は避けたい。
－製品の国際競争力
Kay社のスラスタはトップレベルの比推力（燃費のよさ）を誇り，現在世界で60\％のシェアを獲得している。
－市場予想
各国の政府によって打ち上げられてきたが，現在では各国とも放送•通信衛星需要が満たされつつあり，また衛星自体の高寿命化によって大型静止衛星の市場は10年ほど前から停滞している。今後は寿命を迎えた既存の衛星を置き換えるため年間15機程度の規模となると予想される。

製品（2）超小型衛星用リチウムイオンバッテリ
＊市場予想
超小型衛星は大学などの研究機関利用からスタートしたが，製造費•打上げ費が安価であり，地上民生品を多く利用して手軽に製造•利用が可能であるため，現在では各国政府機関，企業で広く利用され始めている。

＊製品の国際競争力

Kay社はスマートフォンなど，小型携帯端末搭載型リチウムイオンバッテリ市場で世界をリードしており，宇宙分野では後発で はあるものの，地上品を転用した超小型衛星用バッテリで高性能•低コストを武器に先行他社への攻勢を強めている。
＊オープン・クローズ戦略
部品A：この部品の製造は比較的容易に可能である。高度な先進技術を持っていない国でも開発できるため，新興国で安価に生産 し，逆輸入している。

部品B：この部品は最近開発された新しい技術を用いていることで，Gerda国独自の優れた部品として世界中から注目を浴びてい る。

部品C：この部品は部品Bと組み合わせて使用するが，技術としては簡単に製造できる。
部品口 ：この部品の仕様は，近年急速にグローバルに浸透し，多くの企業が製造している。

2．2．結果

ディスカッションの結果，「大型静止衛星用 2 液式 スラスタ」は国際標準化を目指すべきではなく，「超小型衛星用リチウムイオンバッテリ」は国際標準化を目指すべきとの結論がすべてのグループで出 されました。各グループとも最も議論が白熱したの

はオープン・クローズ戦略が可能であるかの判断 で，参加者の皆さまがそれぞれの専攻や知識を生か しながら衛星部品•技術の在り方について多様な側面から意見を述べていました。中心となった意見は次のようなものです。
＊大型衛星用機器の部品は独自技術のものが多く，国際標準化のためにオープン化はできず，クローズ とすべきである。
＊超小型衛星用機器の部品には地上民生品を転用し ているものも多く，オープン化できるものもあり， かつ国際競争力のあるクローズ領域もある。 また，次のような意見も出されました。
＊大型衛星用機器は現在のシェアを維持するという面から，すべてクローズにする。
＊世界各国で開発している製品は，国際標準化を行 い，国際的に分業するのが効率的でよい。

さらに，設定資料からオープン・クローズ戦略以外の国際標準化戦略を適用するのがよいとの意見も ありました。
＊性能の高い部品に関してもオープン化し，他社に自社規格を使ってもらうことで競争力を高める。 ＊自国の優れた性能を持つ製品の技術をオープン化 し，世界の宇宙開発に貢献すべき。

3．1．国際交渉ゲーム

次の国際交渉フェーズでは，参加者の皆さまに は，各国の技術•交渉エキスパートとして自国の製品を国際標準規格とするための国際交渉ゲームに挑 んでいただきました。宇宙関係機器についての国際標準化を取り扱う分科会，ISO／TC20／SC14の参加国として，パンナコッタ国，モンブラン国，ティラ ミス国，パフェ国，プリン国，ミルフィーユ国の6カ国を設定し，また，標準化の提案がなされた製品と して，「超小型衛星用リアクションホイール」，「超小型衛星用バッテリ」，「超小型衛星用姿勢制御用センサ」の三つを設定しました。

国際標準規格の発行の条件として，参加国の3分の 2以上（4ヵ国以上）の賛成が必要であるとし，パン

	（1）を満たすか	（2を満たすか	（3）を満たすか	国祭慓準化を目指すか
大型静止衛星用2液式スラスタ	3／8班	8／8班	1／8班	O／8 班
超小型衛星用リチウムイオンバッテリ	8／8班	8／8班	8／8班	8／8班

3．2．結果

国際交渉フェーズでは，8グループ中7グループに おいて投票によっていくつかの国際標準規格が発行 され，交渉の際のコストなどにより国際標準化に成功した国の中で優勝国が決まりました。第6グループ では交渉が白熱し，他国が利益を上げることを防ぐ ため各国が調整してすべての規格が不成立となりま した。また，アンケートにて「国際交渉の中で最も重視したこと」について伺ったところ， 84% の方が自国の利益の最大化を挙げたのに対し， 9% の方が他国 が利益を上げることの阻止を挙げました。その他に も，自国の信用を得ることを第一に考えた，どの国 も納得できるように考えた，などの回答もありまし た。

4．宇宙産業における国際標準化戦略

ディスカッション結果を発表した後，宇宙産業に おける国際標準化の特徴として次のような内容を紹介しました。宇宙産業には，人工衛星やロケットな どを製造する「宇宙機器産業」，通信放送衛星など の宇宙インフラを利用してサービスを提供する「宇宙利用サービス産業」，GPSを利用したカーナビゲー ションシステムや衛星放送受信用のアンテナなどの機器を製造する「宇宙関連民生機器産業」，宇宙利用サービス産業が提供するサービスを利用すること で自らの事業を効率化，差別化し事業を行う「ユー ザー利用産業群」の四つの領域があります。ディス カッションテーマの大型衛星用機器，超小型衛星用機器は「宇宙機器産業」に分類されますが，本WSで は超小型衛星用機器に，地上民生品を転用してい る，製造数が非常に多い，製造利用コストが安価で あるなど「宇宙関連民生機器産業」「ユーザー利用産業群」にみられるような特徴も設定しています。

大型衛星用機器をはじめ，「宇宙機器産業」にお ける国際標準化にはいくつかの制約があると考えら れます。まず1点目として，大型衛星用機器やロケッ ト部品市場が消費者向けではなく，製造数が限られ ている点です。そのため国際標準化が成功しても市場が拡大しない可能性があります。また，非常に高度な技術を使用しているため，国際標準として技術
また，予備投票が行われるごとに，国際情勢の変化に伴うシェアの変動を起こし，参加者の皆さまに はその度に新たな状況下で交渉ゲームを行っていた だきました。各製品について国際標準規格がつくら れると，ある国がその国際標準規格以外の規格を使用していた場合，そのシェアの分だけ再開発のコス トがかかることとしました。ゲームの勝敗は，国際標準化成功による利益と，交渉カードの使用による ポイントおよびコスト，さらに再開発のコストに よって決定しました。

ます。2点目に，衞星機器が多くの部品において高い技術レベルと品質が求められるため，技術公開が必要となるオープン化が難しい場合が考えられます。 さらに3点目として各国の宇宙機関や企業に独自の規格がそれぞれ存在しており，国際標準を策定する必要性が比較的低いという点も考慮する必要がありま す。ただし，リチウムイオンバッテリのように比較的新しく開発された技術，製品については国際的な枠組みをつくろうという取組みができると考えられ ます。

一方で超小型衛星用機器については，民生品が転用され得るなど，大型衛星ほど高い技術•信頼性が求められるわけではないことから，標準化による新規参入者の増加とそれによるコストダウン，市場拡大が十分望めるのではないかと考えました。さらに宇宙関連民生機器産業，ユーザー利用産業群に関し ても超小型衛星用部品と同様，国際標準化戦略を目指す余地が大きいのではないかということも考えら れます。以上のことから，宇宙産業において国際標準化を特に目指す領域としては

- 宇宙利用分野，宇宙関係民生品の分野
- 新しいコンポーネント，システム が挙げられると考えました。

東京海上日動火災保険株式会社航空保険部宇宙保険室技術顧問永島敬一郎 様

国際標準は，自らつくることが重要です
これまで日本の宇宙開発では新しい技術を開発す ることが重視され，国際標準化活動への取組みは自

発的になかなか進められてきませんでした。欧米の既存の標準技術に従うという環境に慣れてしまい，日本独自の技術を国際標準として海外へ進出させる ことの重要性を，十分に認識されていないことが原因であると思われます。今後は信頼性向上•貿易促進のために，自国技術の国際標準化に積極的に取り組む必要があります。
具体的には，日本の得意な技術分野，日本の宇宙活動に必要不可欠な分野，世界の宇宙利用の底上げ に役立つ分野，将来発展する技術分野を中心とし て，これらの要素が多く含まれる機器などの標準化 を優先的に推進していくべきだと考えています。現在，日本のISOに対する国際標準化提案は，JAXAの設計標準と経済産業省からの委託案件をまとめたも のであり，貿易の拡大や宇宙産業の拡大，品質•信頼性の向上を目指しています。しかし，現状では宇宙関係機器の国内市場規模は比較的小さく，また，世界市場における国際競争力も確立したと言えるし ベルではないため，これらの提案を確実に推進する ためには産官学の英知の結集が不可欠でしょう。

宇宙分野における標準化活動

宇宙分野の国際標準化は，ISOにおいて航空機•宇宙機器を取り扱うTC20（専門委員会）の中のSC13おう よびSC14（分科委員会）で議論されており，SC13は通信規格に関わる標準化，SC14は通信以外の宇宙シ ステム全般（利用に必要な地上機器も含む）につい て取り扱っています。私はSC14の中に設けられた七 つのWGのうち，設計エンジニアリングをテーマとす るWG1のコンビナ（国際議長）を2004年より務めて おります。WG1のフレームワークとしてはアプリ ケーション，システムエンジニアリング，電気関係，ソフトゥェア，通信制御などがあり，今年は15件の国際椎準を発行することを目指しています。
宇宙分野の国際標準化では従来，スペースセグメ ントの標準化について議論してきましたが，現在は スペースセグメントと地上セグメントとを結びつけ る部分についても標準化の機運が高まっているとい えます。WG1においては航空管制，精密農業，列車 の自動運行など，宇宙と地上を結びつけるような，地上のユーザーのニーズに即した宇宙の標準化を進 めていこうと動いています。また，衛星を利用した地上のアプリケーションとしては，災害マネジメン

ト，交通マネジメント，遠隔医療に関して実際に国際標準化を行うための活動をしており，この他にも エネルギーマネジメント，環境マネジメント，水資源，食糧マネジメント，遠隔教育といった分野への展開ができると考えています。

課题解決型の宇宙利用

2013年より衛星打上げが開始されるO3Bというプ ロジェクトがあります。これはアフリカや南アメリ カなどの海底ケーブル網が充実していない地域の人々に対し，衛星を利用した高速インターネット網 を提供しようという計画で，プロジェクトが進めば世界中で 30 億以上の人が衛星経由で結ばれることに なります。海底ケーブル網が行き届かず，多くの人々が高速インターネットによる利便性を享受でき ていないという世界規模の課題に対して，衛星を用 いた解決策を提供したこの計画に，私は非常に注目 しています。これ以外にも，環境問題や自然災害，紛争・テロなどの国境を越えた人的災害，増加を続 けるスペースデブリなど国際的な取組みが求められ ている課題は数多くあり，課題解決型の宇宙利用，特に衛星を利用したサービスのビジネスモデル創出 が今後ますます重要になると思います。こうしたビ ジネスの成立要件として，低コスト・高品質•短納期を安定して提供できることが肝要であるので，こ れらを実現するための衛星利用技術を検討する必要 もあります。

コンビナとしての国際標準化活動

WG1のコンビナとなる以前には，国際標準の重要性•必要性をあまり認識していませんでした。国内 の衛星プロジェクトに携わった際には，プロジェク トの要求事項が実にたくさんあるため，それを理解 することで精一杯であり，目先のこと，そのプロ ジェクトに直結するものしか考えていませんでした

が，その結果，ある技術的な問題に関してすでに持っている知識をプロジェクトに十分に生かすこと ができませんでした。たとえば，帯電放電の防御の ためには何をすればよいのかということを欧米では経験に基づき文書化していますので，それを設計に取り入れるべきであったと後悔したことがありまし た。常日頃から一つのプロジェクトの要求だけでな く，同じ領域の外部の標準についても注目していく方が，全体として確実に，そして早く開発が進むと いえます。

左上の写真はブラジルのサンパウロで本年2012年5月に行われた会議の様子です。ISOの国際会議はこの ようなコの字型で行われ，みんな平等であることを表し，全員が意見を言い合える雾囲気で行われてい ます。

つづいて右上はWG1の写真です。約20人強の参加 メンバーで3日間，最初は一堂に会して議論し，その後専門家と数人のグループに分かれます。国際会議 に出席する方は各分野のエキスパートであるため，彼らとの会話の中では公式の場では聞けない話など も親密に伺うことができ，非常に良い経験になりま した。この間に得た最も重要なことは，12カ国から出席している委員たちと情報交換ができるように なったことです。

最後に，衛星利用分野に関連する標準化活動に関 して，これからの期待と思いを述べたいと思いま す。貿易促進のための衛星技術を用いたアプリケー ションの国際標準づくりと，それを通した世界規模 の人的ネットワークづくり（専門家の最善の知恵を広く収集し普及させること），さらには国際標準を利用して品質と信頼性を確保した上で，高いレベル での競争，あるいは性能測定法などを統一化した フェアな競争の促進が期待できます。最終的に，経済的な活動に優位に立つ，国益重視という視点はも ちろんですが，人類の日常生活の向上に役に立つよ うにという視点がないとビジネスとして成り立たな いのではないかと，私は考えています。

「スペースデブリと宇宙法」

近年，宇宙機や宇宙船に甚大な被害をもたらす スペースデブリ（宇宙ごみ）の増大が問題となっています。

回収が難しいスペースデブリ対策においては各国が協調して排出量を減らすことが何よりも重要であり その際にはルール（宇宙法）の制定が重要となってきます。本WSでは，スペースデブリ削減の条約交渉を体験していただくことを通じて，スペースデブリをめぐる

宇宙法とその課題について参加者の
皆さまとともに検討しました。

講師 内富 素子様（Motoko UCHITOMI）

（独）宇宙航空研究開発機構 総務部 法務課 副課長 国祭部 国際課 兼務
東京大学 公共政策大学院 非常勤講師

1994年3月東京大学法学部卒業。 1994年4月旧宇宙開発事業団（NASDA）入社（企画室） 1997年7月外狢省国際科学協力室出向。 1999年9月オランダライデン大学留学（国際法修士）宇宙環境利用本部，産学官連携部を経て，2012年6月より現職。

本日はスペースデブリの現状と宇宙諸条約 との関係，その規制体制，関連する各文書の概要，そして今後の課題についてお話しま す。10年ほど前はまだ世界的にデブリに対す る問題意識が薄く，産業界への負担などから国際会議でもなかなか前に進まない時期が続 いていました。それが今日，中国の衛星破壊実験やデブリ同士の衝突などによるデブリ量 の急速かつ大幅な増加によって，無関心では いられない問題として広く認識されるように なりました。国連でも規制のガイドラインを策定するなど，この問題に対して技術的•法的な対応が迫られてきています。

スペースデブリと法規制の現状

まず，デブリに関する法規制についてお話 します。宇宙関係条約は基本的に国連宇宙空間平和利用委員会（UNCOPUOS）でつくられ たもので，これらは内容的に古い部分もあ り，現在のデブリ問題をとらえきれていませ ん。しかし，UNCOPUOSはコンセンサス方式 であるため，各国の利害を調整して条約を改定するのは難しく，それゆえ義務規定のない ガイドラインを制定するという話にならざる を得ないのです。

では，この宇宙関連条約がデブリとどう関係するのでしょうか。宇宙条約第 9 条はとりわ けデブリに関係する条項として注目を集めて います。同条には，「宇宙空間の有害な汚染 （harmful contamination）の導入から生ずる環境の悪化を避ける」という一文があります が，ここでいう「contamination」がデブリを対象とするのか否かをめぐって議論が進めら れています。現在，この条項がコンセンサス としてデブリに適用されるとされてはいませ んが，危機意識の高まりに伴いデブリにも当 てはまるのではないかという声も大きくなり つつあります。

さらに，宇宙損害責任条約では損害責任に ついて細かく定めていますが，宇宙損害責任条約がどの程度デブリによる損害に適用され るかについても国際的なコンセンサスはあり ません。しかし，デブリが急激に増加してい

る現在の危機的状況や世界的な関心の高まりを鑑み れば，デブリにも宇宙条約第 9 条の汚染禁止条項や宇宙損害賠償条約が適用されるという解釈が広まって いく可能性はあるでしょう。

また，国内法によってもデブリ規制が行われてい ます。アメリカでは国内企業にデブリの排出量削減 を義務づけており，衛星打上げなどに際してデブリ削減の基準を守ることを業者の認可要件としていま す。こういったデブリ削減目標を事業の許認可まで落とし达む作業は，日本では宇宙活動法でこれから つくっていくという状況です。

ソフトローという解決策

次に，現在あるスキームを紹介します。基本的に宇宙機関間の国際的なスペースデブリ調整委員会 （以下IADC）でガイドラインができたところが国際的なスキームとしてのスタートとされています。は じめにデブリを自主規制するガイドラインを作成し たのはNASAですが，日本でもNASDAがNASAのす ぐ後，世界で2番目に制定しています。実際に宇宙開発を行っている宇宙機関が情報交換をした後，最終的にIADCとしてのデブリガイドラインが策定されま した。しかし，これはIADCに参加している宇宙機関 にしか適用なかったため，国連に持ち込まれ，国連加盟国を対象としたガイドラインがつくられること となりました。この二つのガイドラインをベースラ インとして，現在ではデブリという問題を越えて宇宙活動を持続可能（sustainable）なものにするため の国際行動規範をつくろうという話が，EUを中心に進んでいます。こういったデブリ問題は宇宙空間の平和利用といった言葉だけでは語りきれない部分が あり，安全保障との密接な関係に注目しなければな りません。宇宙空間における軍兵器の配備について は，宇宙条約により核実験や大量破壊兵器の配備が禁止されていますが，通常兵器などに関してはまだ議論が進んでおらず，宇宙兵器の防止には辿り着け ていません。宇宙兵器の禁止の代替案として宇宙空間における状況認識を透明化•共有し，相互監視を行うという概念もできつつあり，こうした考え方が デブリについても当てはめられ，国連やEUで議論さ れています。

それでは，IADCでつくられたデブリガイドライン を国連に持ち込んだ経緯はどのようなものだったの

でしょうか。各国の宇宙機関がデブリ対策の基準を つくる中，IADCで共通的なガイドラインがつくられ たことによって，この枠組みを各国の政府レベルで広げようという動きが起こりました。これが日本の イニシアティブで国連へ持ち込まれて2007年に国連 としてのガイドラインが策定され，各国政府にデブ リ対策に対する一定の責任が生まれました。このが イドラインにはリオービットやデオービットなど具体的な規定がありますが，その実現にはどうしても コストがかかってしまい，産業界からの反発もあり ます。そもそも，この国連のガイドラインは条約で はなく，慣習法化や，慣習法として認められなくて もソフトローとして一定の効力をもつことを目指す ものです。UNCOPUOSはコンセンサスを原則として いるため，各国の利害が対立して条約がつくれない状況の下でとられた法的拘束力のない手段であり，産業界へ十分配慮しつつ，各国が協力してガイドラ インの具体化を進める必要があります。最近では UNCOPUOSの科学技術小委員会の下に「宇宙活動の長期的持続可能性」作業部会が設置され，デブリ問題に止まらない宇宙状況認識，途上国への配慮な ど，宇宙活動を長期的に持続可能な形で行うための幅広い内容を含むガイドラインを検討しています。

また，EUのイニシアティブによる，安全保障分野 も含む持続可能（sustainable）な宇宙活動のための ガイドラインを目的とした国際行動規範の策定に は，アメリカや日本も賛同し，EUの枠を超えて多国間で会合が開かれています。これも法的拘束力があ ると産業の負担になるので，国連のガイドラインと同様，批准しても法的拘束力がないことを前提とし た上で，各国間で交渉が進められています。具体的 には，宇宙物体の破壊の自制，衛星衝突回避のため の通報•協議のメカニズムといった，宇宙活動国間

の透明性向上や信頼醸成のための規定が挙げられま す。さらに，宇宙交通管理という概念の下，宇宙空間において宇宙物体の安全性を確保するための規則 やシステムを構築することを目的とした国際的な動 き，あるいはISOの中にデブリ問題に対応するWGを設置し，国際規格を設けることでWTO加盟国にデブ リ対策を求めるといった動きもあります。

今後の課題

最後に今後の課題についてご紹介します。デブリ に対する認識はここ十数年で大きく変わりつつあ り，今後もデブリ対策は世界的な緊急課題であると いう観点から法解釈も変わっていくでしょう。産業界としても，できれば負担は受け入れたくはない が，国際世論の高まりから規制を受け入れざるを得 ないという段階まできています。しかし，デブリ対策への取組みは宇宙開発の競争力に大きな影響を与 えてしまうため，産業界の声を聴きながら綿密な調整を行い，国際的にバランスのとれた規制となるよ うに交渉していくことが求められます。

デブリ低減をどのように実現していくことが現実的なのか，国際戦略上妥当なのか，そして産業発展 にどんな影響を与えるのかといったことをよく考 え，日本が率先してリーダーシップをとり，国際競争力を確保しつつ国際貢献に資するルールにしてい くことが非常に重要です。

被っていると捉えれば，デブリを国際的な環境問題 として考えることも可能だと考えたからです。
今回は気候変動枠組条約に着目します。地球温暖化問題とデブリ問題は，問題の根本原因を回収する のが難しいため，排出量を減らすことが不可欠であ るという点で共通しています。しかし，排出量の削減には非常にコストがかかり，産業界をはじめ各方面からの批判も想定できます。そのような中で， CO_{2} の排出を規制する条約を結ぶことができた最大の要因は，「各国の危機意識」でした。1980年代から気候変動問題に関する認識が科学者の間で広がり， 1985年のフィラハ国際会議では地球温暖化の可能性 について一定の合意が得られました。つづいて1987年に開かれたベラジオ国際会議では，気候変動問題 に対する危機意識が科学者と政策決定者との間で共有され，次第に国際条約策定への政治的な機運が高 まりました。その結果，1992年に気候変動枠組条約 が制定されたのです。
このように，気候変動枠組条約の制定では「各国 の危機意識」が鍵になりました。では，これはデブ リ問題においても当てはまるのでしょうか。これに ついて検証するため，本WSでは現実の世界よりも各国のデブリの危機意識が高い状況を設定し，参加者 の皆さまに各国の代表になりきり条約交渉ゲームを行っていただきました。

II．ケース説明

本WSでは，デブリに関する条約制定の難しさと， そのために必要な危機意識について理解していただ くことを目的に，国際会議の場を設定し，デブリ削減の条約が制定されるまでの過程を体験していただ きました。国際会議にはアメリカ，日本，ロシア，中国，ブラジル，ベネズエラの6カ国を模したワシン トン国，トーキョー国，モスクワ国，ペキン国，サ ンパウロ国，カラカス国を設定し，参加者の皆さま

には各国の代表者として他国と条約制定に向けた交渉をしていただきました。各班における議長はSDF メンバーが務めました。

本WSにおいて，デブリに関する条約の内容は，三 つの論点ごとにオプションを選択して決定されま す。論点と条約のオプションは以下の通りです。

論点（a）デブリ削減

1 デブリ削減を義務付ける
2 デブリ削減を先進国のみに義務付ける
（先進国＝ワシントン国，トーキョー国，

モスクワ国，ペキン国）

3 デブリ削減をする努力をすべきとの規定を入れる

論点（b）意図的破壊

1 宇宙物体の意図的破壊を完全に禁止する規定を入れる

2 宇宙物体の意図的破壊を行わないよう努力するという規定を入れる
3 宇宙物体の意図的破壊に関する規定を一切入れない

論点（c）デブリ基金
1 各国のデブリ排出量（打ち上げ回数で代用する）に応じて資金を拠出させる
2 先進国に共通で一定金額を拠出させる
3 デブリ基金に関する規定を一切入れない

				最終議長案			勝者
	（a）	（b）	（c）	（a）	（b）	（c）	
1 班	2	1	1	1	1	2	カラカス国
2班	2	1	2	2	2	2	サンパウロ国
3ix	3	2	3	3	2	3	モスクワ国
4班	3	2	1	3	2	3	モスクワ国
5班	2	1	1	3	1	3	カラカス国
$6{ }^{1}$	2	3	1	1	1	1	（条約不成立）
7班	3	1	3	2	2	1	カラカス国
83I	2	1	1	2	2	2	サンパウロ国 カラカス国

国際会議では，各国が希望するオプションを選択 した条約案を持ち寄って，それをもとに議長が議長案を作成し，最終的にその議長案に対する賛否の決 をとることにより条約制定の可否を決定しました。 なお，成立の条件は5カ国以上の賛成と定めました。

また，オプション選択の際の指針として，自国の利益を表す国益ポイントというものを設定しまし た。条約が制定された際に国益ポイントの最も高い国を勝者とすることで，どのような内容の条約が自国にもっとも利益となるかについて，参加者の皆さ まに考えていただきました。

前半の全体交渉パートでは，各論点について6ヵ国全体での議論の場を設定しました。はじめに，自国 に関する情報や各国の宇宙開発状況，デブリ対策の状況を把握した上で，条約案を検討していただきま した。

ここでは自国の利益を優先させることだけを考 え，いかに他国を自国の条約案に近づけるかに焦点 を当て，全体の場で交渉していただきました。全体交渉の後，中間採決として，話し合い後の各国の立場を改めて表明する機会を設けました。このよう に，各国の利害が対立している状況では，それほど話し合いが進まず，また時間がかかるのかという点 から，条約制定の難しさを感じていただけたのでは

ないかと思います。
以上の前半パートのような，各国が自らの利益だ けを主張している状況では，デブリ削減のための条約は制定されません。そこで，後半の個別交渉パー トにおいてはデブリの問題がより一層深刻になった世界を想定することで，各国がデブリへの危機意識 の高まりを受け，条約制定に向けて努力する必要性 があることを強調しました。ここでは，自国の利益 と条約の成立のどちらを優先させるべきかを考えつ つ，妥協点や他国との交渉手段（技術支援や資金援助など）についても考慮して，交渉をしていただき ました。個別交渉で交渉手段を用いると，その分自国に負担コストが発生し，あるいは逆に自国が利益 を受ける場合があることを踏まえ，それを反映する ため国益ポイントにも影響が出ることとしました。 このように，コストを払ってでも条約制定のために他国の妥協を促すという体験から，自国の利益と全体の利益との利害調整も去ることながら，条約成立 に向けて一人ひとりが危機意識を持つことの重要性 を認識していただきました。最後に，個別交渉での議論を反映させた各国の条約案をもとに，議長が最終条約案を提示し，最終採決で条約制定の可否を決定しました。

III．結果

結果は左の表の通りです。それぞれの論点および オプションの番号はケース説明の表に対応していま す。

中間採決では，7班を除くすべての班で5カ国以上 の賛成が得られず，議長案は否決されました。最終採決では，6班を除くすべての班で議長案が可決さ れ，条約成立となりました。班ごとに最終的な国益 ポイントが最も高かった国を勝者としました。

IV．分析

今回，8班中 7 班ときわめて多くの班で条約が成立 しました。しかし，法的拘束力のない法規制が成立 したとしても現状とそれほど変わりません。その観点から考えると，2班•3班は妥協の結果，それほどデ ブリの増加量を抑えられない条約となってしまいま したが，2•3•6班以外（ 6 班は条約不成立）では法的拘束力のある条約を締結することができました。
今回多くの班でデブリ削減の条約が成立した背景 には，多少自国が不利になっても妥協をする国が非常に多かったということが挙げられます。はじめに意見表明をした段階では各国がとる条約案は全く異 なるものでしたが，最終的には各国が妥協して条約成立にまで至りました。この際，交渉材料を使用し てでも条約を制定しょうとする国が多数存在しまし た。これは，自国の損得と将来の宇宙環境とを比較

して，参加者の皆さまは将来の宇宙環境の方により重きを置いたからであると考えられます。その理由 は主に，
（1）架空の国であったため，自国の利益を
追求する度合いが小さかったこと
（2）架空の国の状況が現実よりもかなり
単純化されていたこと
（3）参加者の皆さまのデブリ問題に対する
危機意識が高かったこと
の三つが考えられます。約3人に1人の参加者の方が （1）2 の ような見解をとっていたことから，これらが条約成立に寄与したといえるでしょう。（アンケー ト結果より）。それだけではなく，（3）もまた大きな影響を与えたと考えられます。条約に参加しないと いう選択も可能な状況下で，交渉材料を使うことで自分が不利になろうとも条約を制定させようとする行動は，（1）（2）だけでは説明しきれません。これは，自ら進んで重い義務を負うような条約案をつくろう とする参加者が一定数いたことからも裏づけられま す。

以上より，デブリ問題に対する危機意識が高まれ ば，各国が妥協し実効性のある条約が成立する可能性があると考えられます。

V．おわりに

本WSの最後に，どうすればデブリ削減のための条約を制定することできるのか，参加者の皆さまのご意見を伺いました。その中でも特に多かったのが「各国が歩み寄るべきである」という意見でした。実際にはこれは非常に難しいものでしょう。しか し，今回各国の妥協の末条約を成立させることがで きたように，各国がデブリ問題に対し真剣な目を向 け，より強い危機感を感じれば可能になるではない でしょうか。アンケートでは「世間の関心を得るこ とが必要ではないか」「一般へ知識を普及させるべ きだ」との回答もいただきました。

デブリ問題は一朝一夕で解決できるものではあり ません。そして対策が遅れれば遅れるほど被害が甚大になり，またそれに必要なコストも増大します。 そのため，少しでも早いデブリ削減の条約成立が望 まれます。たとえ対策の効果が目に見えて分かるの が遠い未来でも，解決を先延ばしにしていいという わけではなく，私たち一人ひとりが今この問題につ いて危機感を持つことが必要なのです。

05
 PANEL DISCUSSION

I：「井上友貴様」

S：「坂本 規博 様」

M ：「三宅 正純 様」

Y：「吉岡 奈紗 代表」

Y：本日は「有人宇宙開発の意義と未来」 をテーマにし，有人宇宙開発はなぜ行われ ているのかという疑問に迫っていきたいと

思います。小さい頃から有人宇宙開発に興味関心を持っていた私にとって，有人宇宙開発というのは「職業」であり「現実的な もの」でした。しかし周囲の人間は有人宇宙開発を「夢」や「希望」といった類のも のと捉えており，私は大変不思議で疑問を感じていました。では，有人宇宙開発はど うして「夢」と言われ続けているのでしょ うか。本日は国際宇宙ステーション（以下 ISS）を軸として，有人宇宙開発の意義， そして未来のプロジェクトについて議論し ていこうと思います。まずパネリストの皆

さまに自己紹介および今のお仕事に就くこ とになった経緯についてご紹介いただきま す。

パネリスト自己紹介
I：内閣府宇宙戦略室の井上と申します。宇宙戦略室と私の経歴について簡単に説明致 しますと，2008年に制定された宇宙基本法 は，宇宙政策の大きな転換点となるととも に，日本の宇宙政策の政府の推進体制を1年を目途に見直すことを規定しておりまし

皆きまは有人宇宙開発にどのようなイメージを打持ちでしょうか。あらゆる人々に夢を与え，宇宙へのロマンをかき立てる有人宇宙開発ですが，同時にあらゆる敦智を結集した国家プロジェクト としての側面もあります。このことは我が国にお いても例外ではなく，宇宙開発の更なる発展を目的として策定された宇宙基本計画においても，有人宇宙開発は多くの頁が割かれています。

では，有人宇宙開発は国家の政策上どのような位置づけにあるのでしょうか。本バネルディス カッションでは，有人宇宙開発の現場や宇宙政策 の立案に携わる方をお招きし，有人宇宙開発を進

お聞き
，

パネリスト

井上友貴 様

内閣府 宇宙戦略室 参事官補佐

坂本 規博 ${ }^{\text {栓 }}$

東京財団 研究員

三宅 正純 様

（独）宇宙航空研究開発機構有人宇宙環境利用ミッション本部国際宇宙ステーションプログラムマネージャ

```
コーディネーター
```

吉岡 奈紗
宇宙開発フォーラム実行委員会（SDF）代表

た。その推進体制の見直しに至ったのは本年の6月であり，実際に内閣府の宇宙戦略室という形で宇宙戦略の司令塔をつくる法律が施行されたのが本年の7月です。私は経済産業省に入省後，現在は内閣府に出向 という形で政策に携わっています。

S：坂本と申します。私は最初三井海洋開発で12年間石油掘削船の設計•製造に携 わっていました。その後日産自動車に入社 し，12年間固体燃料ロケットの設計や宇宙 ステーション機器の設計に従事しました。

さらに日本航空宇宙工業会に12年間在籍 し，宇宙産業の政策立案や宇宙産業データ ブックなどの宇宙産業統計資料作成に携わ り，2年前からは東京財団で宇宙や海洋•防衛防災関係の政策を行政府や立法府に提言しています。

M：三宅と申します。現在JAXAでISS計画 のプログラムマネージャとして，主に世界 15カ国が参加するISSの運用•利用に関す る国際調整を行っています。私は，約30年前に日本かISSに参加するか否かの議論が

行われていた頃から有人宇宙開発に携わっ てきました。その間，ワシントンとヒュー ストンに7年ほど駐在して有人宇宙開発の最先端の状況を目撃してきたこともあり，今日は，有人宇宙開発の最前線のお話がで きればと思っています。

ISSの成果評価
Y：それではまず，ISSの評価から話を伺っ ていきます。パネリストの皆さまの立場か らは，ISS計画の成し遂げた成果はどのよ

1998年東京大学工学部卒業。2000年東京大学工学系研究科修士課程修了。同年通商産業省入省（現経済産業省）。情報政策，貿易政策，製造産業政策および通商政策等を担当の後，2007年米国留学。 2009年ハーバード大学公共政策大学院修士課程修了。同年経済産業省製造産業局宇宙産業室室長補佐。2011年内閣官房宇宙開発戦略本部事務局参事官補佐。2012年7月内閣府宇宙戦略室参事官補佐。

1976年4月，三井海洋開発にて石油掘削船，海洋構造物の開発。 1988年7月，日産自動車宇宙航空事業部にて固体ロケット，宇宙ス テーション機器実験装置，防衛システム製品の開発。1999年7月，日本航空宇宙工業会技術部長として宇宙産業政策の提言，宇宙産業 データブックの作成，宇宙基本法の制定に貢献。2011年4月，東京財団研究員（現職）として宇宙／海洋／安全保障政策の研究，立法／行政府への提案。

（独）宇宙航空研究開発機構
有人宇宙環境利用ミッション本部
国際宇宙ステーションプログラムマネージャ

三宅 正純

1982年4月宇宙開発事業団（現（独）宇宙航空研究開発機構）に入社。1998年より，日本宇宙実験棟「きぼう」の開発運用利用業務に従事。特に，約3年半，JAXAヒューストン駐在員事務所長として，国際宇宙ステーション計画の国際調整を行う傍ら，米国有人宇宙開発 の現状を調査してきた。2012年7月より，現瞕。

I：私からは主に国際政治および経済的な観点からの評価についてご説明します。宇宙事業には莫大な費用がかかる上，安全保障に直結する側面もあるた め，各国は重要な国家戦略として議論を重ねていま す。そのため，政治的意図も含め，ISSをはじめと する宇宙事業は多角的な側面から検討されるべきで す。

まず国際政治の観点から考えていきます。例とし てNASAのISSにおける政治的意図を検討してみま しょう。軍事を扱わないNASAが第一に考えたこと は，米国内での予算の確保が非常に困難であったた め，国際協力プログラムとして各国に費用を分担さ せることです。第二にNASAが優位性を持っていた有人技術での宇宙開発を行うことで，西側諸国の リーダーとしての存在感を示したかったというこ と。第三に，欧州と日本が独自の宇宙開発を行わな いよう，ISS計画という場でアメリカがこれらの国々の宇宙開発を監視できるようにするという意図 もありました。このように宇宙開発というのは夢や ロマンだけで語れるものではなく，時に他国を出し抜いてでも自国の存続•繁栄に資する手段を講じる という国際政治の舞台でもあります。

では日本の有人宇宙開発の場合はどのような政治的意図があったのでしょうか。1980年代にNASAか らISS計画への参加を打診された際，宇宙開発委員会ではISS計画に参加する目的として以下のものを挙げました。①有人技術も含む高度技術の獲得，（2）次世代科学や技術開発の促進，（3）宇宙活動範囲の拡大または国際協力の貢献，および（4）実用化の促進で す。これらの決定にあたり当時の日本国内で論点と なっていたのは主に，①技術の自主開発をどのよう に行うのか，（2）平和主義を遵守し宇宙の軍事利用に巻き込まれないようにする，という2点です。こう見る限りでは国際政治的な観点からは，NASAや他 の参加国と比べ消極的な考えにとどまっていたよう に思えます。

次に経済的な観点からの評価ですが，有人宇宙開発は投資効率という観点からすると極めて低いと言 わざるを得ません。それでも日本が投資してきたの は，国家の威信やソフトパワー的な利益，あるいは背景となる日米協力などに理由を求めることができ るでしょう。

ISSを通して日本はドッキング技術や人間が宇宙 で生きていくための技術などを得てきましたが，こ れらは人間が宇宙で活動する前提での技術であるた め，地上に暮らす多くの人々にとってその成果のほ とんどが生かされないという点で，そもそも成果と して評価できるかどうか慎重な検討が必要です。

もう1点考えられるのが，公共事業や産業機能維持のための投資としての評価です。日本がこれまでISSに投資してきた額は約 7,500 億円であり，今後も年間約 400 億円の予算を投じる見込みです。日本の年間宇宙予算が約3，000億円という中では，ISS関連予算は情報収集衛星に次ぎ2番目に大きな規模の事業で，宇宙産業の基盤の維持や公共事業としての側面が強いことが窺えま す。しかし，公共投資に関しては需要の創出や得られた成果のスピンオフなどの形で のリターンがない限り，投資効果があると はいえません。確かに，H－IIA，H－IIBや HTVの開発•打上げ，ISSに関する派生製品が宇宙産業の基盤維持に貢献している点 は認められますが，公共投資の観点からは道路整備やダム建設と比して効果的である とは言い難く，通信放送や地球観測といっ たすでに民間の市場が確立した分野に投資 した方が，産業の発展というより多くの成果が期待できるでしょう。

S：私は日本における有人宇宙開発の位置 づけとISSとの関係から評価してみたいと思います。まず，日本の有人宇宙開発の位置付けについてですが，宇宙基本計画では「世界をリードする先端的な研究開発を推進する」としており，そこには「ISS計画」と「有人宇宙開発を視野に入れた口 ボットによる月探査」の2つが盛り込まれ ています。前者では，「2016年以降の運用延長については，それまでの利用成果や将来の有人宇宙計画，諸外国の状況を総合的 に勘案して判断する」とされ，後者では「長期的にロボットと有人の連携を視野に入れて推進する」とあります。

次にISS計画の意義として，（1）最先端技術力の蓄積，（2）国益の確保および国際プレ ゼンスの向上，そして（3）国民の夢という3点が挙げられています。

それでは，（1）最先端技術力の蓄積から見 ていきましょう。まずハードウェア面で は，H－IIBやHTV，日本モジュール （JEM），宇宙実験装置の設計技術は有人宇宙開発があったからこそ獲得できたもの であり，十分な成果は出ていると考えられ ます。次にソフトウェア面では，日本人の器用さを活かしたロボットアームの操作な ど日本人宇宙飛行士が世界的に評価される活躍をしていることも周知の通りです。そ

して，安全設計管理技術の獲得も大きな成果です。ISS以前の段階でも信頼性管理，品質管理，コンフィギュレーション管理と いう三つの管理技術を有していましたが， ISSのプロジェクトでさらに安全設計管理技術を習得することができました。ただ， ISSの日本モジュール（JEM）の実験装置 を用いた各種実験のアウトプットとなると あまり成果がなかったように感じます。（2）国益やプレゼンスの向上に関しては，世界 が日本の宇宙技術のレベルを高く評価して いることを鑑みると，一定の成果を上げる ことができたと思います。（3）国民の夢につ いては受け取る人によっても違うので何と も言えないというのが正直なところです。

M：ISSを通じて我々が得てきた成果につい て整理するところから私は始めたいと思い ます。まず，ISSとは何かという部分です が，地上では実施できないさまざまな実験研究を行う有人宇宙活動の拠点となってお り，これを完成させるまでには多岐に渡る非常に複雑で高度な技術調整を国際間で行ってきました。その結果，日本は計画通 り日本実験棟「きぼう」を完成させて運用 を開始し，さらに3回の輸送機「こうのと り」を打ち上げ，ISSへの物資輸送の面で も大きく貢献しています。この貢献に応じ て，日本は，ISSからの電力などの資源に ついて， 12.8% 分の利用権を有し，約1年に 1 回の割合で日本人宇宙飛行士の6カ月間の滞在機会を得ています。また，「きぼう」 は，決して日本のためだけに運用されてい るわけではなく，アメリカやカナダが 49.6% の権利を有し利用しています。運用

開始から5年経った現在でも不具合がほと んどなく，参加各国からも「きほう」を利用したいとの要望が来るなど，その能力や機能を余すところなく発揮していると自負 しております。このことは，「きぼう」「こうのとり」の開発•運用の経験を通じ て，日本の技術者，宇宙飛行士は多くのノ ウハウを習得し，他の参加国に勝るとも劣 らない技術しベルに到達したことを物語っ ています。

こうした実績も踏まえ，日本はISSを通 じ，ISS計画参加時に揭げた四つの目標の うち，「高度技術の習得」「次世代科学や技術の促進」「国際貢献」という三つの点 で十分な成果を得たと考えております。残 る「宇宙環境利用の実用化」という目標に はまだまだ克服すべき課題が少なくないも のの，日本が主導している高タンパク質結晶成長実験により，宇宙空間を利用した創薬は近いうちに製品化の目途がつくといわ れております。解決すべき課題は，宇宙空間への物資輸送に莫大なコストがかかるこ とです。これは有人宇宙開発のみならず宇宙開発全体に関係する大きな課題ですが， ISSはその運用コストの約3分の2が輸送コ ストになっており，このコストを下げない ことには宇宙環境利用は採算がとれないと いう見方もあります。

ISSには宇宙開発に関わるあらゆる最先端技術が有人•無人の区別なく集約されて います。技術開発というものは，一度途切 れると長年にわたり営々と積み上げた蓄積 のすべてが無に帰してしまうものです。 ISSについて議論する際にも，このことは肝に銘じるべきだと思います。

宇宙空間での活動を拡大させるための技術開発の成果は各方面から評価が高いよ うです。しかし，経済的な視点，国際的政治的な視点，技術的な視点における評価の ポイントはそれぞれ全く異なったように感 じました。その点に関して，井上様と坂本様はどうお考えでしょうか。

I：日本の技術力の高さがSSの場で証明さ れたことは高く評侕されるべきだと思いま す。そのことを踏まえて，この培った技術 をどう使うかが次のポイントとなると考え ます。ISSを安全につくり運用するという のは，あくまで人間が宇宙に行くことを前提にした話です。たとえば宇宙で実験する際，すべて無人で行えば有人向けの安全技術は不要ですし，実験機材への制約など，有人であることの弊害もあります。人が宇宙に行くこと自体に感銘を受けるという発想そのものも含め，人間が宇宙空間で活動 する理由は考える必要があります。これ は，最終的に納税者へ利益を還元しなけれ ばならないことを考えると必要不可欠な議論です。

S：ハード面ソフト面では多大な利益を上 げてきたものの，現状では未だに実験の成果が出ていないというのが私の認識です。 しかも，今後ISSが在る間（2020年まで） に，ハードウェア，ソフトウェア，実験面 においてこれまでと同等の成果が出るかど うかは別の話です。成果を出すことは非常 に困難であると考えられるが，国際的制約 によりISSを2020年までは運用するなら ば，我が国の知恵を結集してその期間いか にISSを使うかを考えることが重要だと思 います。

Y：ISS計画への参加で蓄積した技術に対す る評価のポイントについて，各立場によっ て見解の相違があったように思います。 ISSの成果については国際政治的観点も考慮して評価すべきだというご意見が出まし たが，三宅さんはこの点に関していかがで しょうか

M：ISSはさまざまな最先端技術を獲得し共有する場でもあるというのが関係者の共通見解です。最近ではまた新たな動きとし て，ISSでの成果を人類社会の将来にどう

還元するかという議論が行われており，以下の三つの柱を国際間で合意して活動を進 めています。
一つ目の柱としては「災害監視」が挙げ られます。地球観測衛星があるのになぜ ISSで行うのかと考える方もいると思いま す。ここには宇宙飛行士の目という，地球観測衛星とは違う視点で災害の様子をタイ ムリーに世の中に伝えることに侕値を置い ています。二つ目は「宇宙医学」です。皆 さまもご存知のように，人間が宇宙空間に長期滞在するとさまざまな弊害が生じま す。そのため再び地上で生活を送るにあ たってはリハビリを行う必要に迫られます が，それらを通じて得られたデータは医療介護その他の技術ヘフィードバックができ るため，ISSと医学の連携する動きが増え ています。三つ目は「教育」です。ISS建設に投じた労力や国際協力を経て得た成果 を将来の宇宙開発に携わる人材へと教育の現場で受け継いでいく必要があります。

これら三つの柱に基づいていろいろな協 カ・プロモーションを行っていくために， JAXAも災害監視用カメラや医学データを提供するなどの協力を行っています。この ように一国の利益を超えた国際貢献が今大 きく進んでいます。

I：これまでに培ったISSでの成果や技術を他分野にも応用するといった視点は確かに今後大切です。また世界全体の利益となる ことに予算を投じることは先進国としての責務でもあります。しかし，宇宙政策全体 を俯瞰する立場から申し上げると，年間 3,000 億円の有限な宇宙予算から国際協力の ために約 15% を充てるという規模の妥当性 は議論されるべきテーマです。

また，科学技術の評価という視点があり ます。一般に科学技術は評価が非常に難し いため，ISSの技術を宇宙政策の中で適切 に評亚を下すことが大切になります。その評価基準は，今後の宇宙の利用拡大に資す るか，日本が宇宙活動を自律的に行うため の能力を碓保することができるかという2点に集約されるでしょう。かつて日本は技術の獲得自体を大きな目標としていました が，現在では世界でも一級の宇宙技術を持 つに至りました。したがって，この技術を いかに国民の利益となる宇宙利用の拡大に つなげるべきか，どうすれば他国に頼らず

宇宙開発を行う能力を維持できるのかが評価の視点になると思います。

M：我々としてもISSに投じる年間400億円 という金額の重さを日々感じながら仕事を しており，コスト削減は最優先事項として います。
利用分野についても，他分野との協力も進めていければと思います。ただ，技術者 として有人か無人を分けて考える発想は全 くありません。有人と無人のそれぞれの特徴をバランスよく組み合わせ，未来の課題 を解決していくことが重要だと考えており ます。
日本が有人宇宙開発に乗り出してから約 30年，これだけの技術を獲得するために費 やした 7,500 億円という投資にはさまざまな意見があるでしょう。しかし，ゼロから有人宇宙技術をスタートさせ，今日，米口に続く技術しベルと国際社会における地位を得られたことは，とても大きな投資効果で あったと思っています。

ISS計画をめぐる各国の動向

Y：ここまではISSが成し遂げた成果とその評価を軸に議論を行ってまいりました。一口にISSと言ってもさまざまな観点から評価が可能であり，総合的に捉える必要があ ることがお分かりいただけたかと思いま す。ここからはISS計画の将来について話 を伺ってまいります。

M ：ISS計画は2020年まで運用を継続するこ とが決まっており，さらに2028年まで運用 できないかという技術的な検討も行ってい ます。

また，国際宇宙探査プログラム （ISECG）という，将来の宇宙探査を国家間共同で行うグループが2007年にでき，日本も参加しています。そこでは無人探査も含め国際協力によって効率のいい宇宙探査 の方法について議論しており，有人による月，小惑星，火星探査の話を進めていま す。

各国の状況ですが，まず，NASAは従来別々だった探査とISSの部局を一つに統合 し，有人宇宙探査を本格的に推進する方向 へ明確に舵を切っています。ISSへの輸送手段については，民間会社の輸送サービス を利用することでコストダウンを図り， NASA自身は月や火星に関するミッション （有人カプセル「Orion／オライオン」） と大型ロケットの「Space Launch System （SLS）計画」を行うという役割分担を図っています。ISSの利用促進に関して は，アメリカの実験機器の半分をNASA以外の民間や研究機関が主体的に使えるよう な体制をとっています。この体制が，小型衛星や創薬などに関するべンチャー企業が主体的にISSを利用する動きを後押しして いるのではないでしょうか。
次にロシアですが，実は一番有人宇宙探査には積極的です。ISSに新たな実験モ ジュールを設置して将来の探査に役立てよ

うとしていますし，さらに月面宇宙基地の建設を計画しており，地上の閉鎖環境を使って，長期滞在によって宇宙飛行士に起 こり得るさまざまな問題を解決するための医学データを取得する実験を進めていま す。

欧州は自身でISSを利用した宇宙探査技術を実証•検討しつつ，ロシアやアメリカ との連携を検討する立場にあります。特に アメリカが開発を進めているオライオンへ の技術協力による連携を模索しておりま す。
中国に関しては独自の路線で宇宙ステー ションや有人の探査機をつくっており，何兆円という膨大な予算に後押しされて非常 に着実に有人宇宙開発を行っているようで す。インドも月への無人探査機を上げてい ますし，有人も目指しています。このよう に，各国ともポストISSを見据えた動きが加速しています。

これらを総括すると，今までISSで培わ れたものをどのように生かし，長期滞在の ために必要な技術をいかに獲得していくか ということが重要になってきます。そして もう一り重要なのは，今後のミッションと その目的を明確に示すことです。そのため運用が予定されている2020年まではISSを ベースに技術猚得を目指しつつ，2015年頃 から次の5年でなすべきこととしてミッ ションや目的について議論を深めていく必要があります。
日本はISS計画を通じて独自の宇宙船の開発が夢ではなく，具体的な目標になりま した。現在は「有人宇宙技術開発ロード マップ」を制定し，ISSで培った技術に何 を加えれば独自の宇宙船ができるだけの技術しべルに達せるかを明確にし，短期，長期の目標を明確にしています。こうした有人宇宙技術を，いかに実証し獲得していく べきかという部分で，ISSという環境は必須となっています。国際間での協議の場に おいては，このような技術実証計画を共通 の目標として設定することで初めて日本も対等なパートナーとして関わっていけると考えています。

日本のISS計画のこれから

Y：ISSの運用終了も見据えた長期的なプラ ンを持つことが重要とのお話でしたが，で

は今後，日本の宇宙開発はどのようなビ ジョンのもとに進めていくべきなのでしょ うか。

S：ポストISS計画を考える際に問題となっ てくるのは未来が読めないという点です。 そこで私からは2050年の日本の社会はどう なっているかを展望した上で，有人宇宙開発に求められる社会的ニーズを検討してみ たいと思います。国家戦略の見地から見る と，まず21世紀に日本が生き残るために考慮すべき課題は，世界的なエネルギーや食糧，資源の争奪，全地球的な環境の保全，国家の安全と国民の安心，少子高齢化など だと考えます。 2 点目として日本が国益を維持するための国の安全確保，国民の生活 の向上，国際プレゼンスの向上，日本再興 が挙げられます。

現在の予想では2050年，世界ではエコ カーの販売台数が大幅に伸びて，再生可能 エネルギーが普及するとされています。ま た日本ではロボット産業などが大きく成長 する一方，さらに高齢化が進んで人口も減少すると予想されています。

これらの予測の下にシンクタンクの視点 から考えますと，今後は将来の社会のニー ズに合うプロジェクトを推進していくべき だと思います。具体的には宇宙エレベー ターが挙げられます。宇宙旅行や宇宙太陽光発電所などは将来宇宙利用の代表例です が，これらは単独で行っても採算がとれま せん。しかし，中間駅をいくつか設けた宇宙エレベーターをつくれば，安価な輸送手段が構築できます。静止軌道まで宇宙太陽光発電所を組み立てる資材を送れ，高度 400 km の静止軌道で途中下車すれば宇宙観光が楽しめるため，各プロジェクトを実現可能なものとすることができるかもしれま せん。ただ，技術的な課題が山積しており すぐには実現できないのが難点です。

I ：政策担当としてはお二方のお話に加えや はりコスト面の話をせざるを得ません。宇宙事業といえども国家戦略の範疇であり，有限な資源で最大のパフォーマンスをあげ る手段を検討する必要があります。国際協調や将来社会のニーズを満たすという目標設定は適当なのだと思います。ただ国家政策として実行に移す際には，現実的な話と して身の丈にあった規模のプロジェクトに

落とし込まなければなりません。

M ：我々もコストの面は非常に厳しく見て おります。当面，ISS計画の現在の枠組み の中での最大の成果がどれだけ得られるか考えつつコスト削減に努めていこうと考え ています。ただ，「きぼう」は非常に多機能な実験室であり，「こうのとり」という高い信頼性を持つ輸送機も持っています。 そのため我々としてはこの二つをキーとし て次のステップを考えていきたいと思って います。これらにかけたコストの大小は皆 さまにもご判断いただきたいと思います が，重要なのは今までに培った技術は明日止めてしまうとゼロに戻ってしまうという ことです。これだけは避けねばなりませ ん。我々はこのような問題，それからコス ト面などを考慮しながら将来の計画を見て いきます。

新しい宇宙基本計画について

Y：それでは今までの議論を踏まえ，現在作成中である新しい宇宙基本計画はどのよ うに検討されるべきでしょうか。

I ：現在宇宙基本計画を見直している中での大きなポイントは，限られた資源をいかに有効に使うかという点であり，そのために プロジェクトに優先順位をつけて実行して いくということにあります。その優先順位 の基準としては，利用の拡大に資している のか，日本の自律性の確保に資しているの かという2点です。これらの観点が日本は ISS計画やポストISS計画をどう考えていく にあたり根本となると考えています。

S：宇宙開発における計画のフローは，国家の目標としての「国家戦略」が大本にあ り，その下に長期的戦略としての「宇宙戦略」，より具体的な短期的戦略である「宇宙政策」，実際の政策実施としての「宇宙 プログラム」があるという構造になってい ます。これに対応するように，「国家戦略」に対しては宇宙基本法が，「宇宙政策」には宇宙基本計画が，「宇宙プログラ ム」にはJAXAの中期計画などがありま す。しかし，実は中間の「宇宙戦略」に対応するものはありません。そのため長期的 な戦略についてのメッセージ性が弱くなる

ばかりか，民間企業も宇宙事業に向けた長期的設備投資•人材育成に取り組むことが できないという事態を招いています。

さて，新しい宇宙基本計画では，ポスト ISSを睨んだISSにおける有益な実験（宇宙太陽光発電の送受電試験，また日本の得意分野である宇宙ロボットを使った宇宙構造物の組立て試験）を取り入れていただきた いと考えています。もう一つ視野に入れる べきなのは，基本計画の対象である10年間 で宇宙旅行をできるだけ推進させることで す。これは将来への技術研究の蓄積を目的 としています。つまり，宇宙空間へ低コス トで大量輸送が可能な手段の研究として，近い将来必ず実現する宇宙旅行から最新の輸送技術を習得すべきだということです。具体的には，観光分野と連携して弾道飛行 のスペースポートを日本国内に誘致し，日本はまず機体製造にパーツサプライヤーと して参画し技術を習得するということが考 えられるでしょう。

M ：我々開発機関では，将来は独自の有人宇宙船を開発する段階まで技術しベルを上 げていくという目標を持っています。その ため，単に技術開発だけではなく，国家で しかできないミッション，宇宙開発の総决算といえるミッションを宇宙基本計画には入れていくべきであると考えており，それ はやはり有人探査だと思っています。逆に このような目標が設定されることで将来の コストについてもより正確に見積もりがで きるのではないかと思っています。ですか らぜひそのような国家しべルの方針を立て ていただきたいですし，我々も当然そのた めに働きたいと思っております。

学生へのメッセージ

Y：それでは，最後に将来を担う学生への メッセージをお願いいたします。

I ：私は行政官として，宇宙の安全保障利用 の解禁や研究開発主導であった宇宙プロ ジェクトを利用主導型に移すといった，日本の宇宙政策の大きな転換点に立ち会うこ とができました。そこでは，宇宙を「夢」 ではなく「現実」として捕らえようといっ た言葉が，宇宙政策転換のキーワードであ りました。

既存の体制や考え方を変えていく時には非常に多くの摩擦があります。しかし，時代や環境の変化を察知してそれに柔軟に対応していくための勇気や知恵を，今日お集 まりいただいた学生の皆さまには培ってい ただきたいと思います。

S ：日本は人口減少•少子高齢化が進むこ とにより2050年にはロボット技術が介護な ど身近なところで活用され，また，宇宙開発では，宇宙太陽光発電所，宇宙エレベー ターや宇宙ロボット，宇宙ゼネコンなどが出てくる時代となります。このような未来 を生き抜くことになる皆さまには，次の成功の方程式を送りたいと思います。「11目標は実現する。（2）継続は力なり。（3）本物は消えない（一つでいいからまずは本物にな る）。（4）日本を動かし世界を動かす。」そ して重要なことは「反対されても安易に旗 を降ろさないこと」です。「勇気を持ち／ リスクを恐れず／世界一に挑戦する（Stay Ambitious／Stay Foolish／Stay Hun－ gry）」という気持ちを持って挑戦してい ただきたいと思います。

M ：私は今，世界各国のさまざまな分野の方々と対等に，ISSやこれからの有人宇宙開発の議論をさせてもらっていることを大 きな幸せを感じています。これから有人宇宙には，航空宇宙分野以外の分野も関わっ てきます。皆さまには，自分にしかできな い分野を見つけ，そこでとにかく世界一を目指していただきたいです。そしてこの日本に生まれたことを誇りにできるような仕事をしてほしいと思います。そしてぜひ， この中から将来一緒に日本の未来を担う仕事をしてくれる人が出て来てくれればうれ しいと思っています。

Y ：本日は，改めてあらゆる立場から多角的な視点をもって，有人宇宙開発を考える ことが必要だと再認識しました。中には厳 しい意見もありましたが，有人宇宙開発を積極的に人類のために使っていこうという点では共通していたと思います。これから もより深く「今」の有人宇宙開発について考え，よりよい社会の「未来」を目指して いければと思います。本日は誠にありがと うございました。

アンケート内容

問1「有人宇間開発で連絸される言葉は何ですか。」／自由回答
問2「有人宇宙開発は捋来どのような方向性を持つべきだと考えますか。」／番号邀択
（1）技術研究に宇宙を有効活用する（2一大プロジェクトを打ち立てる
－縮小して宇宙分算の他のプロジェクトに預算を使う
④縮小して他の公共事業に預算を使う ③その他
問3「問2の理由をお答えください。」／自由回答

［講演後アンケート］

問4「有人宇宙開発は将来どのような方向性を持つべきだと考えますか。」／番号選択
（1）技術研究に宇宙を有効活用する（2）大プロジェクトを打ち立てる
③縮小して宇宙分野の他のプロジェクトに予算を使う
（4）縮小して他の公共事業に予算を使う（5）その他
問5 「問4の理由をお答えください。」／自由回答

アンケート
パネルディスカッションでは，講演前と講演後にアンケートを行いました。その結果をここにご報告させていただきます。

まず，それぞれの質問と選択肢を以下に記載致しました。なお，問1から問3に関し ては講演前に，問4と問5に関しては講演後 にお答えいただきました。アンケートは無記名で行っております。今回，52名の参加者の皆さまにアンケートへのご協力をいた だきました。ご協力，誠にありがとうござ いました。

本アンケートでは，まず問1で参加者の皆さまの有人宇宙開発に対するイメージを お聞きすることによって，宇宙開発にある程度の関心を持っている方が今まで有人宇宙開発をどのように見ていたかを明らかに していこうという意図があります。ここで は有人宇宙開発が夢だと思われていたの か，それとも現実味のある事業として捉え られていたのか確認したいと考えておりま した。次に問2，問4でパネルディスカッ ションを通して参加者の皆さまが将来の有人宇宙開発にどのような期待を持っている のか，また，講演の前後で参加者の皆さま にどのような意識の変化があったのかとい うことを明らかにしていこうという意図が あります。問3と問5に関しては問2と問4の補足となります。

結果

それでは，アンケートの回答結果をご紹介いたします。まず，参加者の皆さまの有人宇宙開発に対するイメージを幾つかご紹介致します。一番多かったご意見は
「ISS」となりました。また，「アポロ」
「スペースシャトル」「NASA」というよ うにアメリカを連想させるような言葉が上位を占める結果となりました。

次に，問2と問4の回答結果をご紹介致し ます。p．34の図1をご参照ください。まず問 2では，（2）を選んだ方が最も多く，この理由としては以下のようなものがありまし た。
＊一大プロジェクトを立ち上げることに よって国民の注目を引いて有人宇宙開発へ の理解を促すべきであると考えるから ＊日本の国力をアピールするツールに使え ると思ったから

次に，（1）選んだ方が最も多く，理由とし ては以下のようなものがありました。
＊人類が将来他の惑星へ進出するためには基礎研究が必要であるから
＊できることを着実に各国が協力して国際 プロジェクトとして行えばよいと思ったか ら
また，それ以外にも，（5）を選んだ方のご意見として，「他分野とのバランスを今ま でよりももっと深く考察すべきである」と いったものがありました。

次に，問4においても（2）を選んだ方が最 も多いという結果となりました。その理由 としては以下のようなものがありました。 ＊何故行う必要が有るのかを考える必要は あるが，税金を使っている以上，国民の関心を反対や賛成意見を含めて集めるために一大プロジェクトをするのがよいと思った から
＊コストの面で非常に大きな問題はある が，それを踏まえた上でやはり一大プロ ジェクトを打ち立てていかなければ，今後 の宇宙開発の停滞や，今まで築き上げてき た技術を失ってしまうことにつながるから

次に多かった回答は問2と同じく①にな りました。その理由としては以下のような ものがありました。
＊講演を聞いて，単に宇宙開発を推進する だけではいけないと分かった。有人宇宙開発をすすめるためには，お金になるビジネ スとして利用していかなければならないの で，まずはそのために基礎研究を行い，そ れを有効活用するような計画を打ち立てる必要があると思ったから
＊有人宇宙開発でなければならないもの と，そうでないものを明確にし，有効な部分でのみ有人宇宙開発をやるべきだと思う

それ以外にも，（5）を選んだ方のご意見と して，有人の打上げは他国任せなところが ある上，ISSも他国との関係を保つために行っているという側面も強い気がするの
で，小規模の予算なりに有人や無人に関わ

（1）技術研究に宇宙を有効活用する

－（2）一大プロジェクトを打ち立てる
（3）縮小して宇宙分野の他の プロジェクトに予算を使う
（4）縮小して他の公共事業に予算を使う （5）その他

図1 講演前後の回答の変化

らない日本独自のビジョンが必要であると思う，といったものがありました。また， （3）を選んだ方のご意見として，資金面から考えても，有人の打上げにかかるコストを縮小して他の宇宙のプロジェクトに予算を使うべきだと思うといったご意見がありま した。

さて，このアンケートはパネルディス カッションの前後に実施致しましたが，前後で参加者の皆さまの考えにどのような変化があったのか，まとめてみました。図2 をご参照ください。
講演の前後で，一部の方がご意見を変え ていらっしゃいます。一番多くみられた変化は「（2）一大プロジェクトを打ち立てる」 から「（1）技術研究に宇宙を有効活用する」 というもので，そのように変えられた方は 5名でした。次に多かったのは先ほどの逆 の変化で3名でした。また，「1）技術研究 に宇宙を有効活用する」から「（3）または（4）縮小する」とご意見を変えられた方が数名 いらっしゃいました。

1 位	（2）\rightarrow（2）	（15 人）	4 位	（5）\rightarrow（5）	（4人）
2位	（1）\rightarrow（1）	（10人）	5 位	（1）\rightarrow（2）	（3人）
3 位	（2）\rightarrow（1）	（5人）	6 位	（3）\rightarrow（2）	（2人）
以下同数	（2）\rightarrow（5）（3）\rightarrow（1）（1）\rightarrow（3）（1）\rightarrow（4）（1）\rightarrow（5）				（各1人）

図2 回答の変化の動き

考察

まず，問1の回答結果から判断するに，参加者の皆さまの多くは，有人宇宙開発と いう言葉から主にアメリカを連想されてい るようです。また，日本に関しては「毛利元宇宙飛行士」「向井宇宙飛行士」との回答が多かったことから，「日本の有人宇宙開発は宇宙飛行士」という方程式があると感じました。かたや夢という言葉はあまり みられなかったことから，参加者の皆さま にとって，有人宇宙開発は夢よりも現実に近い側面の方が強いのではないかと考えま した。

次に，問2と問4では，パネルディスカッ ションの効果と有人宇宙開発の将来への期待を明らかにしました。技術を向上させて いきたい立場であっても予算縮小について考えたり，またその逆もあったりと，パネ ルディスカッションを通じて，参加者の皆 さまにさまざまな視点を提供できたのでは

ないかと思います。一方で，大半の方は意見が変わらなかったということを考える と，もう少し議論を深めるべきであったの かもしれません。また，有人宇宙開発その ものをすべきでないというご意見はなく，今後何らかの形で有人宇宙開発が発展して いければとのご意見が多数でした。
以上のアンケート結果から判断するに，
今後は予算や社会との兼ね合いを考え未来 のことを見据えて今までの技術を有効に利用していけるような計画を打ち立てていく ことが期待されているのではないでしょう か。

日本衛星ビジネス協会様

株式会社
アクセルスペース様

スカパーJSAT株式会社様

地球の合を，あなたに伝えます

日本電気株式会社様

ISFJ
日本政策学生会議

ISFJ日本政策学生会議は「学生の政策提言による望ましい社会の実現」を理念としている非営利の学生団体です。
学生による時代感覚を踏まえた政策立案の支援と政策の実現に向けた場の提供をし，「よりよい日本 の姿を探り，つくる」ことを実現できるよう私たち は日々活動をしています。

宇宙就活2012実行委員会

私たち秋田大学学生宇宙プロジェクトではハイブリッドロケッ ト，缶サットの研究•開発を行っています。メンバーは機械工学科や材料工学科，情報工学科などさまざまな分野の学生が集ま り，それぞれの専門を生かした活動をしています。
昨年度は学生団体で初となる海に向かってロケットを打ち上 げ，ロケットの回収に成功しました。本年は高度 1 km 以上を目指 し活動しています。

宇宙就活とは「働く場として宇宙業界を考える」をコンセプト とし，宇宙業界に関わる企業を集めた，国内で唯一の学生を対象とした企業説明会です。企業説明会の他にも，宇宙業界に見識のある方をお招きした講演会，実際に働いている方のお話を伺える機会なども設けています。
皆さまが宇宙で働くことを真剣に考えるためのよい機会になる ように，実行委員全員で励んでいます。本年度の宇宙就活は 2013年1月19日開催予定です。

秋田大学

学生宇宙プロジェクト

 ASSP九州工業大学•宇宙珸境技術ラボラトリーでは宇宙環境に関 するさまざまな試験を行っています。宇宙環境試験では宇宙 と同じ環境をつくり，その中で衛星および搭載機器が要求仕栐通りに動くことを碓認する必要があります。その中でも超小型衛星試験センターでは今後急速に需要が拡大すると予想 される超小型衛星に特化した試験を一元的に実施できる設備 の導入•整備を進めており，本年度5月にJAXAから打ち上げ られた高電圧技術実証衛星「鳳龍武号」を含む各大学•企業 からの衛星試験を行っています。

04

九州工業大学

超小型衛星試験センター

学生のためのビジネスコンテスト KING2012

実行委員会

筑波大学宇宙技術プロジェクト（STEP）は， 2006年5月に筑波大学の工学を専攻にする学生有志を中心とし，設立されました。
STEPでは，技術者になるためのトレーニング の場として，ロケットや人工衛星といった宇宙に関する技術を題材にしたものづくりを中心とした活動を展開しています。

07

筑波大学
宇宙技術プロジェクト STEP

STeLAは，科学技術分野における国際的なリーダーシップ教育および ネットワーク構築を目的とした国際組織です。毎年理科系の大学生•院生を対象としたリーダーシップフォーラムを提供しており，本年度は東京にてフォーラムを開催しました。フォーラムでは参加者のリーダー シップ育成を目的とし，MIT Leadership Centerの協力を得て開発した講義やロールプレイなどのリーダーシップ教育科学技術が関わる国際的な問題「Natural Disasters」をテーマとした講演•見学•議論，参加者混成チームで，3日かけて一つの課題に取り組み，議論を繰り返しながら国際問題に対する解決策を提示するグループプロジェクトなどのプログ ラムを実施しました。

私たち東海大学チャレンジセンター学生ロケッ ト（TSRP）は，学生の手で小型ハイブリッドロ ケットを製造しており，今回展示したロケット は，本年度2月に北海道の大樹町で実際に打ち上 げたロケットです。

また，学生自身が設計や製作，運営を行ってい る火を使わずに分離する「不知火」といった独自 の無火薬式分離機構やロケットエンジン，共通計器の実物も展示しております。

09

東京大学

サイエンスコミュニケーション
サークル

CAST

私たち東大CASTは，滝川洋二先生のゼミの受講者が中心となって立ち上げた団体です。五月祭•駒場祭での科学イベントの開催や，小学校などへの出張理科教室を はじめ，科学の面白さを多くの人に伝えようと活動して います。
本年度は新しい試みとして，大学生の科学系団体が共同でサイエンスリンクというイベントを実施され，私た ち東大CASTも参加しました。サイエンスコミュニケー ション活動は，年々拡大されています。

従来の枠組みにとらわれず，新しいアイデアで小さ なもの（ 1 kg の超小型衛星）から大きなもの（ 1 km サイ ズのふろしき衛星）まで，革新的な宇宙システムの研究開発を目指している研究室です。すでに3機（XIIV， XI－V，PRISM）の打上げ運用に成功，4機目のNano－ JASMINEを開発中です。

超小型衛星の分野では世界をリードしており，超小型衛星の実利用に向けた技術開発と利用開拓を精力的 に進めています。また宇宙システムをより効果的に動作させるための制御工学や人工知能などの研究も行っ ています。

宇宙への次世代物資輸送としてのマイクロ波推進の原理と現状について紹介します。マイクロ波推進は，地上から供給 されるマイクロ波でロケットの推力を得る推進方式です。パ ルスデトネーションの利用で簡素な構造にでき，空気の利用 で搭載燃料を大幅に削減し，高価なマイクロ波発振源は地上 に設置するため維持•再利用できます。これらによって，打上げ費用を大幅に低減できると期待されています。

現状ではkg級の推力が得られており，今後kg級推進機の打上げが予定されています。

東京大学

中須賀研究室

（東京大学航空宇宙工学専攻中須頡研究窒）

（東京大学大学院 新領域創成科学研究科 先端エネルギー工学専攻 小紫研究室）

本団体ではSPROUT及びNEXUS，二つの衛星プロジェクトを実施し ています。SPROUTは大きさ 20 cm 立方，重量 6.7 kg の本学 2 機目の超小型人工衛星です。このプロジェクトでは窒素ガスによりインフレータ ブルチューブを膨らませ薄膜を展開します。SPROUTは平成25年度H－ IIAロケット相乗り副衛星に内定しており，現在EM機の開発中です。 NEXUSは大きさ 10 cm 立方，重量1．5kgを想定したSEEDS，SPROUTに続く人工衛星です。このプロジェクトは，日本アマチュア衛星通信協会（JAMSAT）と日本大学で共同開発を行っています。

JAXA宇宙科学研究所／東京工業大学松永研究室では，「CubeSat」と呼ばれる 10 cm 立方サイズの超小型人工衛星 を開発しています。現在までに，世界初のCubeSatである「CUTE－1」を含む3機の超小型人工衛星の打上げに成功し ており，現在は理工学分野で最先端のミッションを遂行す る超小型人工衛星「TSUBAME」を開発中です。
ポスター展示では，松永研究室の衛星開発プロジェクト の概要と，現在開発中のTSUBAMEの最新情報について説明しています。

東京工業大学

松永研究室（東京工業大学大学院理工学研究科機械宇宙システム専收松永研究室）

Noti＇sは「宇宙好きに宇宙を知ってもらい，宇宙を舞台に活発に行動する人を増やす」という ことをコンセプトに，宇宙6分野全てで活動して いる学生団体です。今年の3月に設立し，今は文理問わず15名のメンバーが所属しています。
活動内容は，宇宙産業シンポジウムや宇宙酔 など交流を通して宇宙を知ってもらう活動と，勉強会やインタビューなどで培った知識をレ ポートにまとめてアウトプットする活動の大き く分けて二つあります。

17
Live in SPACE
Project

皆さまは「宇宙開発」＝「フィクション」だと思っていませんか？実は私たちの生活と多くの接点があります。私たちは「宇宙」と「身近な生活」との意外な関係を紹介し，多くの人に発信しています。毎年，企業からの協力 をいただき，ショッピングセンターで多くの人々に，宇宙をより身近に感じてもらうイベントを主催しています。多くの人々に「宇宙が身近な存在である」ことを知っていただけるように，私たちは日々活動を行っています。

「宇宙開発フォーラム2012」には2日間で延

宇宙開発フォーラム2012

来場者数開催2日間計

104
 $\xrightarrow{2}$

 べ214名の方にお越しいただきました。その内，104名の方にアンケートにご協力いただ き，その結果をここにご報告させていただき ます。まず，参加者の皆さまのご所属は，学生が 68% ，社会人が 32% でした。その内，学生は高校生から大学院生まで幅広い年齢層の方にご参加いただきました。

また，学生のうち文科系の方が 24% ，理科系の方が 74% でした。理科系といっても，航空宇宙系以外の方にも多くお越しいただいき ました。文科系の方にも関心を持っていただ くことができ，参加者の皆さまは普段知り合 うことのないさまざまな分野の方と親睦を深 めることができたのではないでしょうか。本 フォーラムを，参加者の皆さま同士の交流• ネットワーク構築の場にするという試みが成功したと思われます。
次に，本フォーラムに参加し「新たな知識 が得られたか」という質問には，98\％の方に「大いに得られた」「得られた」とご回答い ただきました。また，「新たな価値観を得ら れたか」との質問には，「大いに得られた」
「得られた」と回答された方が併せて 97% い らっしゃいました。これはさまざまなコンテ ンツにより，普段考えることのない視点から宇宙開発を捉える機会を提供できたといえる結果だと考えております。

さらに，過去宇宙開発フォーラムに参加し たことがあるか伺ったところ，25\％の方が過去に参加したことがあると回答され，中には今年で6回目の参加だという方もいらっしゃい ました。私たちが活動をつづけ，今年で10周年を迎えられたのは，このように毎年ご参加 していただいている皆さまの支えもあってこ そだと実感し，誠に感謝しております。ま た，初めて参加していただいた方が多くい らっしゃるのも，私たちの活動の広がりを感 じることができ，非常に嬉しい限りです。今後もより多くの皆さまに楽しんでいただける ようフォーラム運営を行ってまいります。

最後に，「宇宙開発フォーラムにまた参加 したいと思いますか」という質問に対して
\bigcirc 参加者の所属
高校生
1% 学部 1 年 4%

学部 4 年 16%

できなかった 2 \％ あまりできなかった 4% どちらとも言えない 2 \％
－異なる分野の方々と交流できたか

あまり得られなかった 2 \％

どちらとも言えない 1 \％
－新たな価値観が得られたか
 2 \％

参加者の意見（一部抜粋）
＊普段交流のない方とお話しできて勉強になりまし た。
＊大変意義のある活動だと思いますので，全国的に
広がって欲しいと思います。期待しています。
＊刺激的なプログラムで楽しかったです。

「大いに思う」「そう思う」と回答された方が併せ て 98% いらっしゃいました。これは多くの方が本 フォーラムに満足していただいたことを示している と思われます。同時に，これからの本フォーラムに対する期待の高さも示していると考えられます。こ の結果をしっかりと受け止め，参加者の皆さまのご期待に添えるよう努力していきます。

あまり思わない・思わない
0 \％
どちらとも言えない

－過去宇宙開発フォーラム に参加したことがあるか

－新たな知識は

支援団体•企業一覧

〈後援》

JSF

《特別協賛企業》

 SスカパーJSAT

$\because:$ AXELSPALE
Space within Your Reach

Empowered by Innovation

Deloitte．トーマツ。
 デロイトトーマツコンサルティング株式会社
 NEC maxell

〈協賛企業〉
\cdots

〈協力企業〉

IHIAeroSpace

